test_image_processing_donut.py 7.93 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

21
from transformers.testing_utils import is_flaky, require_torch, require_vision
NielsRogge's avatar
NielsRogge committed
22
23
from transformers.utils import is_torch_available, is_vision_available

24
25
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
from ...test_image_processing_common import prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import DonutFeatureExtractor


class DonutFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
47
        size=None,
NielsRogge's avatar
NielsRogge committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        do_thumbnail=True,
        do_align_axis=False,
        do_pad=True,
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
62
        self.size = size if size is not None else {"height": 18, "width": 20}
NielsRogge's avatar
NielsRogge committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        self.do_thumbnail = do_thumbnail
        self.do_align_axis = do_align_axis
        self.do_pad = do_pad
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

    def prepare_feat_extract_dict(self):
        return {
            "do_resize": self.do_resize,
            "size": self.size,
            "do_thumbnail": self.do_thumbnail,
            "do_align_long_axis": self.do_align_axis,
            "do_pad": self.do_pad,
            "do_normalize": self.do_normalize,
            "image_mean": self.image_mean,
            "image_std": self.image_std,
        }


@require_torch
@require_vision
class DonutFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = DonutFeatureExtractor if is_vision_available() else None

    def setUp(self):
        self.feature_extract_tester = DonutFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "size"))
        self.assertTrue(hasattr(feature_extractor, "do_thumbnail"))
        self.assertTrue(hasattr(feature_extractor, "do_align_long_axis"))
        self.assertTrue(hasattr(feature_extractor, "do_pad"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))

107
108
109
110
111
112
113
114
115
116
117
    def test_feat_extract_from_dict_with_kwargs(self):
        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict)
        self.assertEqual(feature_extractor.size, {"height": 18, "width": 20})

        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict, size=42)
        self.assertEqual(feature_extractor.size, {"height": 42, "width": 42})

        # Previous config had dimensions in (width, height) order
        feature_extractor = self.feature_extraction_class.from_dict(self.feat_extract_dict, size=(42, 84))
        self.assertEqual(feature_extractor.size, {"height": 84, "width": 42})

NielsRogge's avatar
NielsRogge committed
118
119
120
    def test_batch_feature(self):
        pass

121
    @is_flaky()
NielsRogge's avatar
NielsRogge committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
137
138
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
139
140
141
142
143
144
145
146
147
148
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
149
150
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
151
152
153
            ),
        )

154
    @is_flaky()
NielsRogge's avatar
NielsRogge committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def test_call_numpy(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random numpy tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
170
171
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
172
173
174
175
176
177
178
179
180
181
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
182
183
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
184
185
186
            ),
        )

187
    @is_flaky()
NielsRogge's avatar
NielsRogge committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    def test_call_pytorch(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PyTorch tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                1,
                self.feature_extract_tester.num_channels,
203
204
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
205
206
207
208
209
210
211
212
213
214
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
215
216
                self.feature_extract_tester.size["height"],
                self.feature_extract_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
217
218
            ),
        )