binarized_data.py 3.18 KB
Newer Older
VictorSanh's avatar
VictorSanh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
thomwolf's avatar
thomwolf committed
16
Preprocessing script before training DistilBERT.
VictorSanh's avatar
VictorSanh committed
17
"""
VictorSanh's avatar
VictorSanh committed
18
19
20
21
22
import argparse
import pickle
import random
import time
import numpy as np
23
from pytorch_transformers import BertTokenizer, RobertaTokenizer
24
import logging
VictorSanh's avatar
VictorSanh committed
25

26
27
28
29
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
VictorSanh's avatar
VictorSanh committed
30
31
32
33
34

def main():
    parser = argparse.ArgumentParser(description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).")
    parser.add_argument('--file_path', type=str, default='data/dump.txt',
                        help='The path to the data.')
35
36
    parser.add_argument('--tokenizer_type', type=str, default='bert', choices=['bert', 'roberta'])
    parser.add_argument('--tokenizer_name', type=str, default='bert-base-uncased',
VictorSanh's avatar
VictorSanh committed
37
38
39
40
41
42
                        help="The tokenizer to use.")
    parser.add_argument('--dump_file', type=str, default='data/dump',
                        help='The dump file prefix.')
    args = parser.parse_args()


43
44
45
46
47
48
49
    logger.info(f'Loading Tokenizer ({args.tokenizer_name})')
    if args.tokenizer_type == 'bert':
        tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
    elif args.tokenizer_type == 'roberta':
        tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
    bos = tokenizer.special_tokens_map['bos_token'] # `[CLS]` for bert, `<s>` for roberta
    sep = tokenizer.special_tokens_map['sep_token'] # `[SEP]` for bert, `</s>` for roberta
VictorSanh's avatar
VictorSanh committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63

    logger.info(f'Loading text from {args.file_path}')
    with open(args.file_path, 'r', encoding='utf8') as fp:
        data = fp.readlines()


    logger.info(f'Start encoding')
    logger.info(f'{len(data)} examples to process.')

    rslt = []
    iter = 0
    interval = 10000
    start = time.time()
    for text in data:
64
65
        text = f'{bos} {text.strip()} {sep}'
        token_ids = tokenizer.encode(text)
VictorSanh's avatar
VictorSanh committed
66
67
68
69
70
71
72
73
74
75
76
        rslt.append(token_ids)

        iter += 1
        if iter % interval == 0:
            end = time.time()
            logger.info(f'{iter} examples processed. - {(end-start)/interval:.2f}s/expl')
            start = time.time()
    logger.info('Finished binarization')
    logger.info(f'{len(data)} examples processed.')


77
    dp_file = f'{args.dump_file}.{args.tokenizer_name}.pickle'
VictorSanh's avatar
VictorSanh committed
78
79
80
81
82
83
84
85
    rslt_ = [np.uint16(d) for d in rslt]
    random.shuffle(rslt_)
    logger.info(f'Dump to {dp_file}')
    with open(dp_file, 'wb') as handle:
        pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)


if __name__ == "__main__":
86
    main()