test_fsdp.py 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import os
17
import unittest
18
from copy import deepcopy
19
20
21
22
23
24
25
26
27
from functools import partial

from parameterized import parameterized

import tests.trainer.test_trainer
from tests.trainer.test_trainer import TrainerIntegrationCommon  # noqa
from transformers import is_torch_available
from transformers.testing_utils import (
    TestCasePlus,
Hz, Ji's avatar
Hz, Ji committed
28
    backend_device_count,
29
30
31
32
    execute_subprocess_async,
    mockenv_context,
    require_accelerate,
    require_fsdp,
Hz, Ji's avatar
Hz, Ji committed
33
34
    require_torch_accelerator,
    require_torch_multi_accelerator,
35
    slow,
Hz, Ji's avatar
Hz, Ji committed
36
    torch_device,
37
38
39
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import FSDPOption, set_seed
Hz, Ji's avatar
Hz, Ji committed
40
from transformers.utils import is_accelerate_available, is_torch_bf16_available_on_device
41
42


43
44
if is_torch_available():
    from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_1
45
    from transformers.trainer import FSDP_MODEL_NAME
46
47
48
else:
    is_torch_greater_or_equal_than_2_1 = False

49
50
51
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"
dtypes = ["fp16"]
Hz, Ji's avatar
Hz, Ji committed
52
if is_torch_bf16_available_on_device(torch_device):
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    dtypes += ["bf16"]
sharding_strategies = ["full_shard", "shard_grad_op"]
state_dict_types = ["FULL_STATE_DICT", "SHARDED_STATE_DICT"]
set_seed(42)
params = list(itertools.product(sharding_strategies, dtypes))


def get_master_port(real_launcher=False):
    """
    When using a single gpu launcher emulation (i.e. not deepspeed or python -m torch.distributed)
    the issue is that once the port is tied it can't be used anywhere else outside of this process,
    since torch.dist doesn't free the port until the process exits. Therefore for the sake of being
    able to run both emulated launcher and normal launcher tests we need 2 distinct ports.

    This function will give the right port in the right context. For real launcher it'll give the
    base port, for emulated launcher it'll give the base port + 1. In both cases a string is
    returned.

    Args:
        `real_launcher`: whether a real launcher is going to be used, or the emulated one

    """

    master_port_base = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
    if not real_launcher:
        master_port_base = str(int(master_port_base) + 1)
    return master_port_base


if is_torch_available():
    from tests.trainer.test_trainer import (  # noqa
        RegressionModelConfig,
        RegressionPreTrainedModel,
    )

    # hack to restore original logging level pre #21700
    get_regression_trainer = partial(tests.trainer.test_trainer.get_regression_trainer, log_level="info")

91
require_fsdp_version = require_fsdp
92
93
94
95
96
97
98
99
100
101
102
103
104
105
if is_accelerate_available():
    from accelerate.utils.constants import (
        FSDP_PYTORCH_VERSION,
        FSDP_SHARDING_STRATEGY,
    )

    require_fsdp_version = partial(require_fsdp, min_version=FSDP_PYTORCH_VERSION)


def get_launcher(distributed=False, use_accelerate=False):
    # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
    # - it won't be able to handle that
    # 2. for now testing with just 2 gpus max (since some quality tests may give different
    # results with mode gpus because we use very little data)
Hz, Ji's avatar
Hz, Ji committed
106
    num_gpus = min(2, backend_device_count(torch_device)) if distributed else 1
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    master_port = get_master_port(real_launcher=True)
    if use_accelerate:
        return f"""accelerate launch
        --num_processes {num_gpus}
        --main_process_port {master_port}
        --use_fsdp
        --fsdp_auto_wrap_policy TRANSFORMER_BASED_WRAP
        --fsdp_state_dict_type SHARDED_STATE_DICT
        --fsdp_transformer_layer_cls_to_wrap BertLayer""".split()
    return f"torchrun --nnodes 1 --nproc-per-node {num_gpus} --master-port {master_port}".split()


def _parameterized_custom_name_func(func, param_num, param):
    # customize the test name generator function as we want both params to appear in the sub-test
    # name, as by default it shows only the first param
    param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
    return f"{func.__name__}_{param_based_name}"


@require_accelerate
Hz, Ji's avatar
Hz, Ji committed
127
@require_torch_accelerator
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
@require_fsdp_version
class TrainerIntegrationFSDP(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
        master_port = get_master_port(real_launcher=False)
        self.dist_env_1_gpu = {
            "MASTER_ADDR": "localhost",
            "MASTER_PORT": master_port,
            "RANK": "0",
            "LOCAL_RANK": "0",
            "WORLD_SIZE": "1",
        }

        self.fsdp_config = {
            "backward_prefetch": "backward_pre",
            "forward_prefetch": "False",
            "limit_all_gathers": "False",
            "use_orig_params": "True",
            "sync_module_states": "True",
            "activation_checkpointing": "False",
            "min_num_params": 1,
        }

    def tearDown(self):
        super().tearDown()

    @parameterized.expand(params, name_func=_parameterized_custom_name_func)
    def test_fsdp_config(self, sharding_strategy, dtype):
        output_dir = self.get_auto_remove_tmp_dir()
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "fsdp": f"{sharding_strategy} offload auto_wrap",
            "fsdp_config": self.fsdp_config,
        }
        kwargs[dtype] = True
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
            self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
            self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
            for k, v in trainer.args.fsdp_config.items():
                self.assertEqual(v, self.fsdp_config[k])
            self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    @parameterized.expand(params, name_func=_parameterized_custom_name_func)
    def test_fsdp_config_transformers_auto_wrap(self, sharding_strategy, dtype):
        output_dir = self.get_auto_remove_tmp_dir()
        fsdp_config = deepcopy(self.fsdp_config)
        del fsdp_config["min_num_params"]
        fsdp_config["transformer_layer_cls_to_wrap"] = "BertLayer"
        kwargs = {
            "output_dir": output_dir,
            "train_len": 128,
            "save_steps": 5,
            "learning_rate": 0.1,
            "fsdp": f"{sharding_strategy} offload auto_wrap",
            "fsdp_config": fsdp_config,
        }
        kwargs[dtype] = True
        prefix = "FSDP_"
        with mockenv_context(**self.dist_env_1_gpu):
            trainer = get_regression_trainer(**kwargs)
            self.assertEqual(trainer.args.fsdp[0], sharding_strategy)
            self.assertEqual(trainer.args.fsdp[1], FSDPOption.OFFLOAD)
            self.assertEqual(trainer.args.fsdp[2], FSDPOption.AUTO_WRAP)
            fsdp_sharding_strategy = (
                str(FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1)
                if is_accelerate_available("0.26.0")
                else sharding_strategy.upper()
            )
            self.assertEqual(os.environ[f"{prefix}SHARDING_STRATEGY"], fsdp_sharding_strategy)
            self.assertEqual(os.environ[f"{prefix}OFFLOAD_PARAMS"], "true")
            self.assertEqual(os.environ[f"{prefix}AUTO_WRAP_POLICY"], "TRANSFORMER_BASED_WRAP")
            self.assertEqual(
                os.environ[f"{prefix}TRANSFORMER_CLS_TO_WRAP"], ",".join(fsdp_config["transformer_layer_cls_to_wrap"])
            )
            self.assertEqual(os.environ[f"{prefix}BACKWARD_PREFETCH"], fsdp_config["backward_prefetch"].upper())
            self.assertEqual(os.environ[f"{prefix}FORWARD_PREFETCH"], fsdp_config["forward_prefetch"])
            self.assertEqual(os.environ[f"{prefix}USE_ORIG_PARAMS"], fsdp_config["use_orig_params"])
            self.assertEqual(os.environ[f"{prefix}SYNC_MODULE_STATES"], fsdp_config["sync_module_states"])
            self.assertEqual(os.environ.get("ACCELERATE_USE_FSDP", "false"), "true")

213
    @parameterized.expand(params, name_func=_parameterized_custom_name_func)
Hz, Ji's avatar
Hz, Ji committed
214
    @require_torch_multi_accelerator
215
216
217
218
219
220
221
222
223
224
225
    @slow
    def test_basic_run(self, sharding_strategy, dtype):
        launcher = get_launcher(distributed=True, use_accelerate=False)
        output_dir = self.get_auto_remove_tmp_dir()
        args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}"]
        fsdp_args = ["--fsdp", f"{sharding_strategy} auto_wrap", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
        script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
        cmd = launcher + script + args + fsdp_args
        execute_subprocess_async(cmd, env=self.get_env())

    @parameterized.expand(dtypes)
Hz, Ji's avatar
Hz, Ji committed
226
    @require_torch_multi_accelerator
227
    @slow
228
    @unittest.skipIf(not is_torch_greater_or_equal_than_2_1, reason="This test on pytorch 2.0 takes 4 hours.")
229
230
231
232
233
234
235
236
237
238
    def test_basic_run_with_cpu_offload(self, dtype):
        launcher = get_launcher(distributed=True, use_accelerate=False)
        output_dir = self.get_auto_remove_tmp_dir()
        args = self.get_base_args(output_dir, 1, 50).split() + [f"--{dtype}", "--max_steps", "10"]
        fsdp_args = ["--fsdp", "full_shard auto_wrap offload", "--fsdp_transformer_layer_cls_to_wrap", "BertLayer"]
        script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
        cmd = launcher + script + args + fsdp_args
        execute_subprocess_async(cmd, env=self.get_env())

    @parameterized.expand(state_dict_types, name_func=_parameterized_custom_name_func)
Hz, Ji's avatar
Hz, Ji committed
239
    @require_torch_multi_accelerator
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    @slow
    def test_training_and_can_resume_normally(self, state_dict_type):
        output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)

        sharding_strategy = "full_shard"
        use_accelerate = state_dict_type == "SHARDED_STATE_DICT"
        launcher = get_launcher(True, use_accelerate=use_accelerate)
        args = self.get_base_args(output_dir, 2, 25).split()
        script = [f"{self.examples_dir_str}/pytorch/text-classification/run_glue.py"]
        logs = self.run_cmd_and_get_logs(use_accelerate, sharding_strategy, launcher, script, args, output_dir)

        # resume from ckpt
        checkpoint = os.path.join(output_dir, "checkpoint-115")
        resume_args = args + f"--resume_from_checkpoint {checkpoint}".split()
254
255
256
257
258
259
260
261
262
263
264
265
266

        is_fsdp_ckpt = os.path.isdir(checkpoint) and (
            # this checks the FSDP state dict when `SHARDED_STATE_DICT` is used
            any(
                FSDP_MODEL_NAME in folder_name
                for folder_name in os.listdir(checkpoint)
                if os.path.isdir(os.path.join(checkpoint, folder_name))
            )
            # this checks the FSDP state dict when `FULL_STATE_DICT` is used
            or os.path.isfile(os.path.join(checkpoint, f"{FSDP_MODEL_NAME}.bin"))
        )
        self.assertTrue(is_fsdp_ckpt)

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        logs_resume = self.run_cmd_and_get_logs(
            use_accelerate, sharding_strategy, launcher, script, resume_args, output_dir
        )

        for log, log1 in zip(logs, logs_resume):
            if "learning_rate" in log:
                self.assertAlmostEqual(log["learning_rate"], log1["learning_rate"], delta=1e-5)

    def run_cmd_and_get_logs(self, use_accelerate, sharding_strategy, launcher, script, args, output_dir):
        if not use_accelerate:
            fsdp_args = [
                "--fsdp",
                f"{sharding_strategy} auto_wrap",
                "--fsdp_transformer_layer_cls_to_wrap",
                "BertLayer",
            ]
            cmd = launcher + script + args + fsdp_args
        else:
            fsdp_config = f"""
                --fsdp_sharding_strategy {FSDP_SHARDING_STRATEGY.index(sharding_strategy.upper()) + 1}
            """.split()
            cmd = launcher + fsdp_config + script + args

        # keep for quick debug
        # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
        execute_subprocess_async(cmd, env=self.get_env())
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        return logs

    def get_base_args(self, output_dir, num_epochs, logging_steps):
        return f"""
298
            --model_name_or_path google-bert/bert-base-cased
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
            --task_name mrpc
            --output_dir {output_dir}
            --overwrite_output_dir
            --do_train
            --max_seq_length 128
            --per_device_train_batch_size 16
            --learning_rate 5e-5
            --num_train_epochs {num_epochs}
            --lr_scheduler_type cosine
            --logging_steps {logging_steps}
            --save_strategy epoch
            --do_eval
            --evaluation_strategy epoch
            --report_to none
        """