test_tokenization_camembert.py 5.94 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2018 HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

18
from transformers import CamembertTokenizer, CamembertTokenizerFast
Yih-Dar's avatar
Yih-Dar committed
19
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
20
from transformers.utils import is_torch_available
21

Yih-Dar's avatar
Yih-Dar committed
22
from ...test_tokenization_common import TokenizerTesterMixin
23
24


Yih-Dar's avatar
Yih-Dar committed
25
26
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
SAMPLE_BPE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
27

28
FRAMEWORK = "pt" if is_torch_available() else "tf"
29
30


31
32
@require_sentencepiece
@require_tokenizers
33
34
35
36
class CamembertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = CamembertTokenizer
    rust_tokenizer_class = CamembertTokenizerFast
    test_rust_tokenizer = True
37
    test_sentencepiece = True
38
39
40
41
42
43
44
45

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = CamembertTokenizer(SAMPLE_VOCAB)
        tokenizer.save_pretrained(self.tmpdirname)

46
47
48
49
50
51
    @unittest.skip(
        "Token maps are not equal because someone set the probability of ('<unk>NOTUSED', -100), so it's never encoded for fast"
    )
    def test_special_tokens_map_equal(self):
        return

52
53
54
    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "<pad>"
55
        token_id = 1  # 1 is the offset id, but in the spm vocab it's 3
56

57
58
        self.assertEqual(self.get_tokenizer().convert_tokens_to_ids(token), token_id)
        self.assertEqual(self.get_tokenizer().convert_ids_to_tokens(token_id), token)
59
60
61
62
63
64
65

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "<s>NOTUSED")
        self.assertEqual(vocab_keys[1], "<pad>")
        self.assertEqual(vocab_keys[-1], "<mask>")
66
        self.assertEqual(len(vocab_keys), 1_005)
67
68

    def test_vocab_size(self):
69
        self.assertEqual(self.get_tokenizer().vocab_size, 1_000)
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    def test_rust_and_python_bpe_tokenizers(self):
        tokenizer = CamembertTokenizer(SAMPLE_BPE_VOCAB)
        tokenizer.save_pretrained(self.tmpdirname)
        rust_tokenizer = CamembertTokenizerFast.from_pretrained(self.tmpdirname)

        sequence = "I was born in 92000, and this is fals茅."

        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        # <unk> tokens are not the same for `rust` than for `slow`.
        # Because spm gives back raw token instead of `unk` in EncodeAsPieces
        # tokens = tokenizer.tokenize(sequence)
        tokens = tokenizer.convert_ids_to_tokens(ids)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence = "I was born in 92000, and this is fals茅."

        tokens = tokenizer.tokenize(sequence)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        rust_tokenizer = self.get_rust_tokenizer()
        ids = tokenizer.encode(sequence)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}  # noqa: E501
        # fmt: on

        # camembert is a french model. So we also use french texts.
        sequences = [
            "Le transformeur est un mod猫le d'apprentissage profond introduit en 2017, "
            "utilis茅 principalement dans le domaine du traitement automatique des langues (TAL).",
            "脌 l'instar des r茅seaux de neurones r茅currents (RNN), les transformeurs sont con莽us "
            "pour g茅rer des donn茅es s茅quentielles, telles que le langage naturel, pour des t芒ches "
            "telles que la traduction et la synth猫se de texte.",
        ]

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="camembert-base",
            revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf",
            sequences=sequences,
        )