test_modeling_tf_t5.py 6.38 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import T5Config, is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_tf, slow
thomwolf's avatar
thomwolf committed
24
25


26
if is_tf_available():
27
    from transformers.modeling_tf_t5 import TFT5Model, TFT5WithLMHeadModel
thomwolf's avatar
thomwolf committed
28
29


thomwolf's avatar
thomwolf committed
30
@require_tf
31
class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
32

33
34
    is_encoder_decoder = True
    all_model_classes = (TFT5Model, TFT5WithLMHeadModel) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
35
36

    class TFT5ModelTester(object):
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_labels=True,
            vocab_size=99,
            n_positions=14,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            d_ff=37,
            relative_attention_num_buckets=8,
            dropout_rate=0.1,
            initializer_factor=0.002,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
56
57
58
59
60
61
62
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_labels = use_labels
            self.vocab_size = vocab_size
63
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
64
65
66
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
67
68
69
70
            self.d_ff = d_ff
            self.relative_attention_num_buckets = relative_attention_num_buckets
            self.dropout_rate = dropout_rate
            self.initializer_factor = initializer_factor
thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
77
78
79
80
81
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_labels = None
            if self.use_labels:
82
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
thomwolf's avatar
thomwolf committed
83
84

            config = T5Config(
thomwolf's avatar
thomwolf committed
85
                vocab_size=self.vocab_size,
86
87
88
89
90
91
92
93
                n_positions=self.n_positions,
                d_model=self.hidden_size,
                d_ff=self.d_ff,
                d_kv=self.hidden_size // self.num_attention_heads,
                num_layers=self.num_hidden_layers,
                num_heads=self.num_attention_heads,
                relative_attention_num_buckets=self.relative_attention_num_buckets,
                dropout_rate=self.dropout_rate,
94
95
                initializer_factor=self.initializer_factor,
            )
96
97
98
99

            return (config, input_ids, input_mask, token_labels)

        def create_and_check_t5_model(self, config, input_ids, input_mask, token_labels):
thomwolf's avatar
thomwolf committed
100
            model = TFT5Model(config=config)
101
102
103
104
105
            inputs = {
                "encoder_input_ids": input_ids,
                "decoder_input_ids": input_ids,
                "decoder_attention_mask": input_mask,
            }
106
            encoder_output, decoder_output = model(inputs)
thomwolf's avatar
thomwolf committed
107

108
109
110
            encoder_output, decoder_output = model(
                input_ids, decoder_attention_mask=input_mask, encoder_input_ids=input_ids
            )
thomwolf's avatar
thomwolf committed
111
112

            result = {
113
114
                "encoder_output": encoder_output.numpy(),
                "decoder_output": decoder_output.numpy(),
thomwolf's avatar
thomwolf committed
115
116
            }
            self.parent.assertListEqual(
117
118
                list(result["encoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
119
            self.parent.assertListEqual(
120
121
                list(result["decoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
122

123
        def create_and_check_t5_with_lm_head(self, config, input_ids, input_mask, token_labels):
thomwolf's avatar
thomwolf committed
124
            model = TFT5WithLMHeadModel(config=config)
125
126
127
128
129
            inputs = {
                "encoder_input_ids": input_ids,
                "decoder_input_ids": input_ids,
                "decoder_attention_mask": input_mask,
            }
130
            prediction_scores, decoder_output = model(inputs)
thomwolf's avatar
thomwolf committed
131
132
133
134
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
135
136
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
137
138
139

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
140
            (config, input_ids, input_mask, token_labels) = config_and_inputs
141
142
143
144
145
            inputs_dict = {
                "encoder_input_ids": input_ids,
                "decoder_input_ids": input_ids,
                "decoder_attention_mask": input_mask,
            }
thomwolf's avatar
thomwolf committed
146
147
148
149
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFT5ModelTest.TFT5ModelTester(self)
150
        self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
161
162

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_t5_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_t5_model(*config_and_inputs)

    def test_with_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs)

thomwolf's avatar
thomwolf committed
163
    @slow
thomwolf's avatar
thomwolf committed
164
    def test_model_from_pretrained(self):
165
        for model_name in ["t5-small"]:
166
            model = TFT5Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
167
            self.assertIsNotNone(model)