"examples/nas/oneshot/enas/macro.py" did not exist on "73b2221b5eb4fd21802e6bf41e21d5df8ef9bf2c"
test_modeling_tf_pegasus.py 11.6 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15

Matt's avatar
Matt committed
16
17
from __future__ import annotations

18
19
20
import unittest

from transformers import AutoTokenizer, PegasusConfig, is_tf_available
Matt's avatar
Matt committed
21
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
22
from transformers.utils import cached_property
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
26
from ...test_pipeline_mixin import PipelineTesterMixin
27
28
29
30
31


if is_tf_available():
    import tensorflow as tf

32
    from transformers import TFAutoModelForSeq2SeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
33
34


35
36
@require_tf
class TFPegasusModelTester:
37
    config_cls = PegasusConfig
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
55
        max_position_embeddings=40,
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size

        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_pegasus_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFPegasusModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
112
        head_mask = inputs_dict["head_mask"]
113
114
115
        self.batch_size = 1

        # first forward pass
116
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


def prepare_pegasus_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
148
149
    head_mask=None,
    decoder_head_mask=None,
150
    cross_attn_head_mask=None,
151
152
153
154
155
156
157
158
159
160
161
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
162
163
164
165
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
166
167
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
168
169
170
171
172
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
173
174
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
175
        "cross_attn_head_mask": cross_attn_head_mask,
176
    }
177
178
179


@require_tf
180
class TFPegasusModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
181
    all_model_classes = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
182
    all_generative_model_classes = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
183
184
185
186
187
188
    pipeline_model_mapping = (
        {
            "conversational": TFPegasusForConditionalGeneration,
            "feature-extraction": TFPegasusModel,
            "summarization": TFPegasusForConditionalGeneration,
            "text2text-generation": TFPegasusForConditionalGeneration,
Yih-Dar's avatar
Yih-Dar committed
189
            "translation": TFPegasusForConditionalGeneration,
190
191
192
193
        }
        if is_tf_available()
        else {}
    )
194
195
    is_encoder_decoder = True
    test_pruning = False
196
    test_onnx = False
197
198

    def setUp(self):
199
        self.model_tester = TFPegasusModelTester(self)
200
201
202
203
204
        self.config_tester = ConfigTester(self, config_class=PegasusConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

205
206
207
    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)
208

209

210
211
@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
212
@require_tf
213
class TFPegasusIntegrationTests(unittest.TestCase):
214
215
216
217
    src_text = [
        """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
        """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning 'Oh I think you're nominated'", said Dappy."And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around."At the end of the day we're grateful to be where we are in our careers."If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a  re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" """,
    ]
218
    expected_text = [
Sylvain Gugger's avatar
Sylvain Gugger committed
219
220
        "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to"
        " reduce the risk of wildfires.",
221
222
223
224
225
226
227
228
229
230
        'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.',
    ]  # differs slightly from pytorch, likely due to numerical differences in linear layers
    model_name = "google/pegasus-xsum"

    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.model_name)

    @cached_property
    def model(self):
231
        model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
232
233
234
235
236
237
238
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        assert self.expected_text == generated_words

    def translate_src_text(self, **tokenizer_kwargs):
239
        model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, padding=True, return_tensors="tf")
240
241
242
243
244
245
246
247
248
249
250
251
        generated_ids = self.model.generate(
            model_inputs.input_ids,
            attention_mask=model_inputs.attention_mask,
            num_beams=2,
            use_cache=True,
        )
        generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True)
        return generated_words

    @slow
    def test_batch_generation(self):
        self._assert_generated_batch_equal_expected()