test_modeling_tf_mbart.py 8.56 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Matt's avatar
Matt committed
16
17
from __future__ import annotations

18
19
20
import unittest

from transformers import AutoTokenizer, MBartConfig, is_tf_available
Matt's avatar
Matt committed
21
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
22
from transformers.utils import cached_property
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
26
from ...test_pipeline_mixin import PipelineTesterMixin
27
28


29
if is_tf_available():
30
31
    import tensorflow as tf

32
    from transformers import TFAutoModelForSeq2SeqLM, TFMBartForConditionalGeneration, TFMBartModel
33
34


35
36
@require_tf
class TFMBartModelTester:
37
    config_cls = MBartConfig
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            **self.config_updates,
        )
        inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict
104

105
106
107
    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFMBartModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]
108

109
110
        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
111
        head_mask = inputs_dict["head_mask"]
112
        self.batch_size = 1
113

114
        # first forward pass
115
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
116

117
118
        output, past_key_values = outputs.to_tuple()
        past_key_values = past_key_values[1]
119

120
121
122
123
124
125
126

def prepare_mbart_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
127
128
    head_mask=None,
    decoder_head_mask=None,
129
    cross_attn_head_mask=None,
130
131
132
133
134
135
136
137
138
139
140
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
141
142
143
144
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
145
146
    if cross_attn_head_mask is None:
        cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
147
148
149
150
151
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": decoder_attention_mask,
152
        "head_mask": head_mask,
153
154
        "decoder_head_mask": decoder_head_mask,
        "cross_attn_head_mask": cross_attn_head_mask,
155
156
157
158
    }


@require_tf
159
class TFMBartModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
160
161
    all_model_classes = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
    all_generative_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
162
163
164
165
166
167
    pipeline_model_mapping = (
        {
            "conversational": TFMBartForConditionalGeneration,
            "feature-extraction": TFMBartModel,
            "summarization": TFMBartForConditionalGeneration,
            "text2text-generation": TFMBartForConditionalGeneration,
Yih-Dar's avatar
Yih-Dar committed
168
            "translation": TFMBartForConditionalGeneration,
169
170
171
172
        }
        if is_tf_available()
        else {}
    )
173
174
    is_encoder_decoder = True
    test_pruning = False
175
    test_onnx = False
176

177
178
179
180
181
182
183
184
185
186
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
            # Exception encountered when calling layer '...'
            return True

        return False

187
188
189
190
191
192
193
194
195
196
197
    def setUp(self):
        self.model_tester = TFMBartModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MBartConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)

198
199
200

@require_sentencepiece
@require_tokenizers
Lysandre Debut's avatar
Lysandre Debut committed
201
@require_tf
202
class TFMBartModelIntegrationTest(unittest.TestCase):
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
    ]
    expected_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
    ]
    model_name = "facebook/mbart-large-en-ro"

    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.model_name)

    @cached_property
    def model(self):
217
        model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name)
218
219
220
221
222
223
224
        return model

    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
225
        model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="tf")
226
227
228
229
230
231
232
233
234
        generated_ids = self.model.generate(
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words

    @slow
    def test_batch_generation_en_ro(self):
        self._assert_generated_batch_equal_expected()