test_modeling_tf_convbert.py 16.9 KB
Newer Older
abhishek thakur's avatar
abhishek thakur committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Matt's avatar
Matt committed
15
16
from __future__ import annotations

abhishek thakur's avatar
abhishek thakur committed
17
18
19
20
21
22
23
import os
import tempfile
import unittest

from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
abhishek thakur's avatar
abhishek thakur committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99


if is_tf_available():
    import tensorflow as tf

    from transformers import (
        TFConvBertForMaskedLM,
        TFConvBertForMultipleChoice,
        TFConvBertForQuestionAnswering,
        TFConvBertForSequenceClassification,
        TFConvBertForTokenClassification,
        TFConvBertModel,
    )


class TFConvBertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 384
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.embedding_size = 128
        self.head_ratio = 2
        self.conv_kernel_size = 9
        self.num_groups = 1
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
100
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
abhishek thakur's avatar
abhishek thakur committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = ConvBertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            return_dict=True,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFConvBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}

        inputs = [input_ids, input_mask]
        result = model(inputs)

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFConvBertForMaskedLM(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFConvBertForSequenceClassification(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }

        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

    def create_and_check_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFConvBertForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))

    def create_and_check_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFConvBertForTokenClassification(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

    def create_and_check_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFConvBertForQuestionAnswering(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }

        result = model(inputs)
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_tf
229
class TFConvBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
abhishek thakur's avatar
abhishek thakur committed
230
231
232
233
234
235
236
237
238
239
240
241
    all_model_classes = (
        (
            TFConvBertModel,
            TFConvBertForMaskedLM,
            TFConvBertForQuestionAnswering,
            TFConvBertForSequenceClassification,
            TFConvBertForTokenClassification,
            TFConvBertForMultipleChoice,
        )
        if is_tf_available()
        else ()
    )
242
243
244
245
246
247
248
249
250
251
252
253
    pipeline_model_mapping = (
        {
            "feature-extraction": TFConvBertModel,
            "fill-mask": TFConvBertForMaskedLM,
            "question-answering": TFConvBertForQuestionAnswering,
            "text-classification": TFConvBertForSequenceClassification,
            "token-classification": TFConvBertForTokenClassification,
            "zero-shot": TFConvBertForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
abhishek thakur's avatar
abhishek thakur committed
254
255
    test_pruning = False
    test_head_masking = False
256
    test_onnx = False
abhishek thakur's avatar
abhishek thakur committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

    def setUp(self):
        self.model_tester = TFConvBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

    @slow
290
    def test_saved_model_creation_extended(self):
abhishek thakur's avatar
abhishek thakur committed
291
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
292
        config.output_hidden_states = True
abhishek thakur's avatar
abhishek thakur committed
293
294
295
        config.output_attentions = True

        if hasattr(config, "use_cache"):
296
            config.use_cache = True
abhishek thakur's avatar
abhishek thakur committed
297
298
299
300
301
302
303
304
305
306
307

        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)

        for model_class in self.all_model_classes:
            class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)
            num_out = len(model(class_inputs_dict))

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname, saved_model=True)
308
309
                saved_model_dir = os.path.join(tmpdirname, "saved_model", "1")
                model = tf.keras.models.load_model(saved_model_dir)
abhishek thakur's avatar
abhishek thakur committed
310
                outputs = model(class_inputs_dict)
311
312
313
314
315
316
317

                if self.is_encoder_decoder:
                    output_hidden_states = outputs["encoder_hidden_states"]
                    output_attentions = outputs["encoder_attentions"]
                else:
                    output_hidden_states = outputs["hidden_states"]
                    output_attentions = outputs["attentions"]
abhishek thakur's avatar
abhishek thakur committed
318
319

                self.assertEqual(len(outputs), num_out)
320
321
322
323
324
325
326
327
328
329
330
331

                expected_num_layers = getattr(
                    self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
                )

                self.assertEqual(len(output_hidden_states), expected_num_layers)
                self.assertListEqual(
                    list(output_hidden_states[0].shape[-2:]),
                    [self.model_tester.seq_length, self.model_tester.hidden_size],
                )

                self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers)
abhishek thakur's avatar
abhishek thakur committed
332
                self.assertListEqual(
333
                    list(output_attentions[0].shape[-3:]),
abhishek thakur's avatar
abhishek thakur committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
                    [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
                )

    @slow
    def test_model_from_pretrained(self):
        model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base")
        self.assertIsNotNone(model)

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)

        def check_decoder_attentions_output(outputs):
            out_len = len(outputs)
            self.assertEqual(out_len % 2, 0)
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],
            )

        def check_encoder_attentions_output(outputs):
            attentions = [
                t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
            ]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            out_len = len(outputs)
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)

            if self.is_encoder_decoder:
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)

            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
            check_encoder_attentions_output(outputs)


@require_tf
class TFConvBertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 768]
        self.assertEqual(output.shape, expected_shape)

        expected_slice = tf.constant(
            [
                [
418
419
420
                    [-0.03475493, -0.4686034, -0.30638832],
                    [0.22637248, -0.26988646, -0.7423424],
                    [0.10324868, -0.45013508, -0.58280784],
abhishek thakur's avatar
abhishek thakur committed
421
422
423
424
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)