test_modeling_llama.py 33.4 KB
Newer Older
Jason Phang's avatar
Jason Phang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch LLaMA model. """


import unittest

20
from parameterized import parameterized
21
from pytest import mark
22
23

from transformers import LlamaConfig, is_torch_available, set_seed
24
from transformers.testing_utils import require_flash_attn, require_torch, require_torch_gpu, slow, torch_device
Jason Phang's avatar
Jason Phang committed
25

Joao Gante's avatar
Joao Gante committed
26
from ...generation.test_utils import GenerationTesterMixin
Jason Phang's avatar
Jason Phang committed
27
28
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Joao Gante's avatar
Joao Gante committed
29
from ...test_pipeline_mixin import PipelineTesterMixin
Jason Phang's avatar
Jason Phang committed
30
31
32
33
34


if is_torch_available():
    import torch

35
36
37
38
39
40
41
    from transformers import (
        CodeLlamaTokenizer,
        LlamaForCausalLM,
        LlamaForSequenceClassification,
        LlamaModel,
        LlamaTokenizer,
    )
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    from transformers.models.llama.modeling_llama import AttnMaskConverter


@require_torch
class AttentionMaskTester(unittest.TestCase):
    def check_non_causal(self, bsz, q_len, kv_len, mask_2d, mask_4d):
        mask_indices = (mask_2d != 1)[:, None].broadcast_to((bsz, q_len, kv_len))
        mask_4d_values = mask_4d[:, 0][mask_indices]
        is_inf = mask_4d_values == -float("inf")
        is_min = mask_4d_values == torch.finfo(mask_4d.dtype).min
        assert torch.logical_or(is_inf, is_min).all()

    def check_to_4d(self, mask_converter, q_len, kv_len, additional_mask=None, bsz=3):
        mask_2d = torch.ones((bsz, kv_len), device=torch_device, dtype=torch.long)

        if additional_mask is not None:
            for bsz_idx, seq_idx in additional_mask:
                mask_2d[bsz_idx, seq_idx] = 0

        mask_4d = mask_converter.to_4d(mask_2d, query_length=q_len, key_value_length=kv_len)

        assert mask_4d.shape == (bsz, 1, q_len, kv_len)

        context = mask_converter.sliding_window
        if mask_converter.is_causal and context is None:
            # k * (k+1) / 2 tokens are masked in triangualar masks
            num_tokens_masked = bsz * (q_len * (q_len - 1) // 2)

            if 0 not in mask_2d:
                assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked
            if 0 in mask_2d:
                # at least causal mask + maybe more
                assert (mask_4d != 0).sum().cpu().item() >= num_tokens_masked
                self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d)
        elif not mask_converter.is_causal and context is None:
            if 0 not in mask_2d:
                assert (mask_4d != 0).sum().cpu().item() == 0
            if 0 in mask_2d:
                self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d)
        elif mask_converter.is_causal and context is not None:
            # k * (k+1) / 2 tokens are masked in triangualar masks
            num_tokens_masked = (q_len * (q_len - 1) // 2) + self.compute_num_context_mask(kv_len, context, q_len)
            num_tokens_masked = bsz * num_tokens_masked

            if 0 not in mask_2d:
                assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked
            if 0 in mask_2d:
                # at least causal mask + maybe more
                assert (mask_4d != 0).sum().cpu().item() >= num_tokens_masked
                self.check_non_causal(bsz, q_len, kv_len, mask_2d, mask_4d)

    def check_to_causal(self, mask_converter, q_len, kv_len, bsz=3):
        mask_4d = mask_converter.to_causal_4d(bsz, query_length=q_len, key_value_length=kv_len, device=torch_device)

        if q_len == 1 and mask_converter.sliding_window is None:
            # no causal mask if q_len is 1
            assert mask_4d is None
            return

        context = mask_converter.sliding_window
        if mask_converter.is_causal and context is None:
            # k * (k+1) / 2 tokens are masked in triangualar masks
            num_tokens_masked = bsz * (q_len * (q_len - 1) // 2)

            assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked
        elif not mask_converter.is_causal and context is None:
            assert (mask_4d != 0).sum().cpu().item() == 0
        elif mask_converter.is_causal and context is not None:
            # k * (k+1) / 2 tokens are masked in triangualar masks
            num_tokens_masked = (q_len * (q_len - 1) // 2) + self.compute_num_context_mask(kv_len, context, q_len)
            num_tokens_masked = bsz * num_tokens_masked

            assert (mask_4d != 0).sum().cpu().item() == num_tokens_masked

    def compute_num_context_mask(self, kv_len, context, q_len):
        # This function computes the # of attention tokens that are added for
        # the sliding window
        c_mask_len = kv_len - context
        num_mask_triangle = c_mask_len * (c_mask_len + 1) // 2
        cut_mask_len = max(c_mask_len - q_len, 0)
        num_cut_mask = cut_mask_len * (cut_mask_len + 1) // 2
        return num_mask_triangle - num_cut_mask

    def test_2d_to_4d_causal(self):
        mask_converter = AttnMaskConverter(is_causal=True)

        # auto-regressive use case
        self.check_to_4d(mask_converter, q_len=1, kv_len=7)
        # special auto-regressive case
        self.check_to_4d(mask_converter, q_len=3, kv_len=7)
        # non auto-regressive case
        self.check_to_4d(mask_converter, q_len=7, kv_len=7)

        # same with extra attention masks
        self.check_to_4d(mask_converter, q_len=1, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
        self.check_to_4d(mask_converter, q_len=3, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
        self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])

    def test_2d_to_4d(self):
        torch.ones((3, 7), device=torch_device, dtype=torch.long)
        mask_converter = AttnMaskConverter(is_causal=False)

        # non auto-regressive case
        self.check_to_4d(mask_converter, q_len=7, kv_len=7)

        # same with extra attention masks
        self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])

    def test_2d_to_4d_causal_sliding(self):
        torch.ones((3, 7), device=torch_device, dtype=torch.long)
        mask_converter = AttnMaskConverter(is_causal=True, sliding_window=5)

        # auto-regressive use case
        self.check_to_4d(mask_converter, q_len=1, kv_len=7)
        # special auto-regressive case
        self.check_to_4d(mask_converter, q_len=3, kv_len=7)
        # non auto-regressive case
        self.check_to_4d(mask_converter, q_len=7, kv_len=7)

        # same with extra attention masks
        self.check_to_4d(mask_converter, q_len=1, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
        self.check_to_4d(mask_converter, q_len=3, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])
        self.check_to_4d(mask_converter, q_len=7, kv_len=7, additional_mask=[(0, 2), (1, 3), (2, 0)])

    def test_causal_mask(self):
        mask_converter = AttnMaskConverter(is_causal=True)

        # auto-regressive use case
        self.check_to_causal(mask_converter, q_len=1, kv_len=7)
        # special auto-regressive case
        self.check_to_causal(mask_converter, q_len=3, kv_len=7)
        # non auto-regressive case
        self.check_to_causal(mask_converter, q_len=7, kv_len=7)

    def test_causal_mask_sliding(self):
        mask_converter = AttnMaskConverter(is_causal=True, sliding_window=3)

        # auto-regressive use case
        self.check_to_causal(mask_converter, q_len=1, kv_len=7)
        # special auto-regressive case
        self.check_to_causal(mask_converter, q_len=3, kv_len=7)
        # non auto-regressive case
        self.check_to_causal(mask_converter, q_len=7, kv_len=7)
Jason Phang's avatar
Jason Phang committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198


class LlamaModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
199
        num_hidden_layers=2,
Jason Phang's avatar
Jason Phang committed
200
201
202
203
204
205
206
207
208
209
210
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
211
        pad_token_id=0,
Jason Phang's avatar
Jason Phang committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
235
        self.pad_token_id = pad_token_id
Jason Phang's avatar
Jason Phang committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return LlamaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
275
            pad_token_id=self.pad_token_id,
Jason Phang's avatar
Jason Phang committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        )

    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LlamaModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = LlamaModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = LlamaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = LlamaForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
Joao Gante's avatar
Joao Gante committed
414
class LlamaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
415
    all_model_classes = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
Jason Phang's avatar
Jason Phang committed
416
    all_generative_model_classes = (LlamaForCausalLM,) if is_torch_available() else ()
Joao Gante's avatar
Joao Gante committed
417
418
419
420
421
422
423
424
425
426
    pipeline_model_mapping = (
        {
            "feature-extraction": LlamaModel,
            "text-classification": LlamaForSequenceClassification,
            "text-generation": LlamaForCausalLM,
            "zero-shot": LlamaForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
Jason Phang's avatar
Jason Phang committed
427
    test_headmasking = False
Joao Gante's avatar
Joao Gante committed
428
    test_pruning = False
Jason Phang's avatar
Jason Phang committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

    def setUp(self):
        self.model_tester = LlamaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LlamaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def test_llama_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_llama_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_llama_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = LlamaForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

487
    @unittest.skip("Llama buffers include complex numbers, which breaks this test")
Jason Phang's avatar
Jason Phang committed
488
489
    def test_save_load_fast_init_from_base(self):
        pass
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

    @parameterized.expand([("linear",), ("dynamic",)])
    def test_model_rope_scaling(self, scaling_type):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        short_input = ids_tensor([1, 10], config.vocab_size)
        long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        original_model = LlamaModel(config)
        original_model.to(torch_device)
        original_model.eval()
        original_short_output = original_model(short_input).last_hidden_state
        original_long_output = original_model(long_input).last_hidden_state

        set_seed(42)  # Fixed seed at init time so the two models get the same random weights
        config.rope_scaling = {"type": scaling_type, "factor": 10.0}
        scaled_model = LlamaModel(config)
        scaled_model.to(torch_device)
        scaled_model.eval()
        scaled_short_output = scaled_model(short_input).last_hidden_state
        scaled_long_output = scaled_model(long_input).last_hidden_state

        # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
        # maximum sequence length, so the outputs for the short input should match.
        if scaling_type == "dynamic":
            self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
        else:
            self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))

        # The output should be different for long inputs
        self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    @require_flash_attn
    @require_torch_gpu
    @mark.flash_attn_test
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        """
        Overwritting the common test as the test is flaky on tiny models
        """
        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-7b-hf",
            load_in_4bit=True,
            device_map={"": 0},
        )

        tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

        texts = ["hi", "Hello this is a very long sentence"]

        tokenizer.padding_side = "right"
        tokenizer.pad_token = tokenizer.eos_token

        inputs = tokenizer(texts, return_tensors="pt", padding=True).to(0)

        output_native = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_native = tokenizer.batch_decode(output_native)

        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-7b-hf", load_in_4bit=True, device_map={"": 0}, use_flash_attention_2=True
        )

        output_fa_2 = model.generate(**inputs, max_new_tokens=20, do_sample=False)
        output_fa_2 = tokenizer.batch_decode(output_fa_2)

        self.assertListEqual(output_native, output_fa_2)

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

@require_torch
class LlamaIntegrationTest(unittest.TestCase):
    @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!")
    @slow
    def test_model_7b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map="auto")
        out = model(torch.tensor([input_ids]))
        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]])
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
        # slicing logits[0, 0, 0:30]
        # fmt: off
        EXPECTED_SLICE = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,])
        # fmt: on
        torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-5, rtol=1e-5)

    @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!")
    @slow
    def test_model_13b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf", device_map="auto")
        out = model(torch.tensor(input_ids))
        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]])
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
        # slicing logits[0, 0, 0:30]
        # fmt: off
        EXPECTED_SLICE = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273])
        # fmt: on
        torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-5, rtol=1e-5)

    @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!")
    @slow
    def test_model_13bf_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf", device_map="auto")
        out = model(torch.tensor(input_ids))
        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]])
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
        # slicing logits[0, 0, 0:30]
        # fmt: off
        EXPECTED_SLICE = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513])
        # fmt: on
        torch.testing.assert_close(out.mean(-1), EXPECTED_SLICE, atol=1e-2, rtol=1e-2)

    @unittest.skip(
        "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test"
    )
    @slow
    def test_model_70b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf", device_map="auto")
        out = model(torch.tensor(input_ids))

        EXPECTED_MEAN = torch.tensor(
            [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]], dtype=torch.float32
        )
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
        # fmt: off
        EXPECTED_SLICE = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312])
        # fmt: on
        torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-5, rtol=1e-5)

    @unittest.skip("Model is curently gated")
    @slow
    def test_model_13b_greedy_generation(self):
        EXPECTED_TEXT_COMPLETION = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi"""
        prompt = "Simply put, the theory of relativity states that "
        tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf")
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
        model = LlamaForCausalLM.from_pretrained(
            "meta-llama/Llama-2-13b-chat-hf", device_map="sequential", use_safetensors=False
        )

        # greedy generation outputs
        generated_ids = model.generate(input_ids, max_new_tokens=64, top_p=None, temperature=1, do_sample=False)
        text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719


@require_torch
class CodeLlamaIntegrationTest(unittest.TestCase):
    PROMPTS = [
        '''def remove_non_ascii(s: str) -> str:
    """ <FILL_ME>
    return result
''',
        """# Installation instructions:
    ```bash
<FILL_ME>
    ```
This downloads the LLaMA inference code and installs the repository as a local pip package.
""",
        """class InterfaceManagerFactory(AbstractManagerFactory):
    def __init__(<FILL_ME>
def main():
    factory = InterfaceManagerFactory(start=datetime.now())
    managers = []
    for i in range(10):
        managers.append(factory.build(id=i))
""",
        """/-- A quasi-prefunctoid is 1-connected iff all its etalisations are 1-connected. -/
theorem connected_iff_etalisation [C D : precategoroid] (P : quasi_prefunctoid C D) :
π₁ P = 0 ↔ <FILL_ME> = 0 :=
begin
split,
{ intros h f,
    rw pi_1_etalisation at h,
    simp [h],
    refl
},
{ intro h,
    have := @quasi_adjoint C D P,
    simp [←pi_1_etalisation, this, h],
    refl
}
end
""",
    ]

    @require_torch_gpu
    @slow
    def test_model_7b_logits(self):
        model = LlamaForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf").to(torch_device)
        tokenizer = CodeLlamaTokenizer.from_pretrained("codellama/CodeLlama-7b-hf")
        # Tokenize and prepare for the model a list of sequences or a list of pairs of sequences.
        # meaning by default this supports passing splitted list of inputs
        processed_text = tokenizer.batch_decode(tokenizer(self.PROMPTS)["input_ids"], add_special_tokens=False)
        # fmt: off
        EXPECTED_TEXT = [
            '<s> <PRE> def remove_non_ascii(s: str) -> str:\n    """  <SUF>\n    return result\n <MID>',
            '<s> <PRE> # Installation instructions:\n    ```bash\n <SUF>\n    ```\nThis downloads the LLaMA inference code and installs the repository as a local pip package.\n <MID>',
            '<s> <PRE> class InterfaceManagerFactory(AbstractManagerFactory):\n    def __init__( <SUF>\ndef main():\n    factory = InterfaceManagerFactory(start=datetime.now())\n    managers = []\n    for i in range(10):\n        managers.append(factory.build(id=i))\n <MID>',
            '<s> <PRE> /-- A quasi-prefunctoid is 1-connected iff all its etalisations are 1-connected. -/\ntheorem connected_iff_etalisation [C D : precategoroid] (P : quasi_prefunctoid C D) :\nπ₁ P = 0 ↔  <SUF> = 0 :=\nbegin\nsplit,\n{ intros h f,\n    rw pi_1_etalisation at h,\n    simp [h],\n    refl\n},\n{ intro h,\n    have := @quasi_adjoint C D P,\n    simp [←pi_1_etalisation, this, h],\n    refl\n}\nend\n <MID>'
        ]
        # fmt: on
        self.assertEqual(processed_text, EXPECTED_TEXT)
        processed_text_suffix_first = tokenizer.batch_decode(
            tokenizer(self.PROMPTS, suffix_first=True, add_special_tokens=False)["input_ids"]
        )

        # fmt: off
        EXPECTED_TEXT = [
            '<PRE> <SUF>\n    return result\n <MID> def remove_non_ascii(s: str) -> str:\n    """ ',
            '<PRE> <SUF>\n    ```\nThis downloads the LLaMA inference code and installs the repository as a local pip package.\n <MID> # Installation instructions:\n    ```bash\n',
            '<PRE> <SUF>\ndef main():\n    factory = InterfaceManagerFactory(start=datetime.now())\n    managers = []\n    for i in range(10):\n        managers.append(factory.build(id=i))\n <MID> class InterfaceManagerFactory(AbstractManagerFactory):\n    def __init__(',
            '<PRE> <SUF> = 0 :=\nbegin\nsplit,\n{ intros h f,\n    rw pi_1_etalisation at h,\n    simp [h],\n    refl\n},\n{ intro h,\n    have := @quasi_adjoint C D P,\n    simp [←pi_1_etalisation, this, h],\n    refl\n}\nend\n <MID> /-- A quasi-prefunctoid is 1-connected iff all its etalisations are 1-connected. -/\ntheorem connected_iff_etalisation [C D : precategoroid] (P : quasi_prefunctoid C D) :\nπ₁ P = 0 ↔ '
        ]
        EXPECTED_IDS = torch.tensor([[    1, 32007, 822, 3349, 29918, 5464, 29918, 294, 18869, 29898,29879, 29901, 851, 29897, 1599, 851, 29901, 13, 1678, 9995, 29871, 32008, 13, 1678, 736, 1121, 13, 32009, 15941, 1661, 29899, 28599, 2687, 4890, 515, 263, 1347, 29889, 13, 13, 1678, 826, 3174, 29901, 13, 4706, 269, 29901, 450, 1347, 304, 3349, 1661, 29899, 28599, 2687, 4890, 515, 29889, 13, 13, 1678, 16969, 29901, 13, 4706, 450, 1347, 411, 1661, 29899, 28599, 2687, 4890, 6206, 29889, 13, 1678, 9995, 13, 1678, 1121, 353, 5124, 13, 1678, 363, 274, 297, 269, 29901, 13, 4706, 565, 4356, 29898, 29883, 29897, 529, 29871, 29896, 29906, 29947, 29901, 13, 9651, 1121, 4619, 274, 32010, 2]])
        # fmt: on
        self.assertEqual(processed_text_suffix_first, EXPECTED_TEXT)
        input_ids = tokenizer(self.PROMPTS[0], return_tensors="pt")["input_ids"]
        generated_ids = model.generate(input_ids.to(torch_device), max_new_tokens=128)
        torch.testing.assert_close(generated_ids, EXPECTED_IDS)

        EXPECTED_INFILLING = [
            '<s> <PRE> def remove_non_ascii(s: str) -> str:\n    """  <SUF>\n    return result\n <MID>Remove non-ASCII characters from a string.\n\n    Args:\n        s: The string to remove non-ASCII characters from.\n\n    Returns:\n        The string with non-ASCII characters removed.\n    """\n    result = ""\n    for c in s:\n        if ord(c) < 128:\n            result += c <EOT></s>'
        ]
        infilling = tokenizer.batch_decode(generated_ids)
        self.assertEqual(infilling, EXPECTED_INFILLING)