test_modeling_auto.py 11.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import copy
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import is_torch_available
21
22
23
24
25
26
27
from transformers.testing_utils import (
    DUMMY_UNKWOWN_IDENTIFIER,
    SMALL_MODEL_IDENTIFIER,
    require_scatter,
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
28

29

30
if is_torch_available():
31
32
33
    from transformers import (
        AutoConfig,
        AutoModel,
34
35
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
36
37
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
38
        AutoModelForSeq2SeqLM,
39
        AutoModelForSequenceClassification,
40
        AutoModelForTableQuestionAnswering,
41
        AutoModelForTokenClassification,
42
43
44
45
46
47
        AutoModelWithLMHead,
        BertConfig,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
48
        BertForTokenClassification,
49
        BertModel,
50
51
        FunnelBaseModel,
        FunnelModel,
52
53
54
55
56
        GPT2Config,
        GPT2LMHeadModel,
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
57
58
        TapasConfig,
        TapasForQuestionAnswering,
59
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    from transformers.models.auto.modeling_auto import (
61
62
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
63
64
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
65
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
66
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
67
        MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
Lysandre's avatar
Lysandre committed
68
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
69
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
70
71
        MODEL_WITH_LM_HEAD_MAPPING,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
72
73
74
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
75
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
76
77


78
@require_torch
thomwolf's avatar
thomwolf committed
79
class AutoModelTest(unittest.TestCase):
80
    @slow
thomwolf's avatar
thomwolf committed
81
    def test_model_from_pretrained(self):
82
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
83
84
85
86
87
88
89
90
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
Lysandre Debut's avatar
Lysandre Debut committed
91
92
93
94
95

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
96

thomwolf's avatar
thomwolf committed
97
98
    @slow
    def test_model_for_pretraining_from_pretrained(self):
99
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
100
101
102
103
104
105
106
107
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
108
109
110
            # Only one value should not be initialized and in the missing keys.
            missing_keys = loading_info.pop("missing_keys")
            self.assertListEqual(["cls.predictions.decoder.bias"], missing_keys)
111
            for key, value in loading_info.items():
112
                self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
113

114
    @slow
LysandreJik's avatar
LysandreJik committed
115
    def test_lmhead_model_from_pretrained(self):
116
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
117
118
119
120
121
122
123
124
125
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

162
    @slow
LysandreJik's avatar
LysandreJik committed
163
    def test_sequence_classification_model_from_pretrained(self):
164
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
165
166
167
168
169
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
170
171
172
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
173
174
175
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

176
    @slow
LysandreJik's avatar
LysandreJik committed
177
    def test_question_answering_model_from_pretrained(self):
178
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
179
180
181
182
183
184
185
186
187
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    @slow
    @require_scatter
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

203
204
    @slow
    def test_token_classification_model_from_pretrained(self):
205
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
206
207
208
209
210
211
212
213
214
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
215
216
217
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
218
219
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
220
221
222
223

    def test_from_identifier_from_model_type(self):
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
        self.assertIsInstance(model, RobertaForMaskedLM)
224
225
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
226

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

Lysandre's avatar
Lysandre committed
242
243
244
245
246
247
248
249
    def test_parents_and_children_in_mappings(self):
        # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
        # by the parents and will return the wrong configuration type when using auto models

        mappings = (
            MODEL_MAPPING,
            MODEL_FOR_PRETRAINING_MAPPING,
            MODEL_FOR_QUESTION_ANSWERING_MAPPING,
250
            MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
Lysandre's avatar
Lysandre committed
251
252
253
            MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            MODEL_WITH_LM_HEAD_MAPPING,
254
255
256
            MODEL_FOR_CAUSAL_LM_MAPPING,
            MODEL_FOR_MASKED_LM_MAPPING,
            MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
257
258
259
260
261
262
        )

        for mapping in mappings:
            mapping = tuple(mapping.items())
            for index, (child_config, child_model) in enumerate(mapping[1:]):
                for parent_config, parent_model in mapping[: index + 1]:
Sam Shleifer's avatar
Sam Shleifer committed
263
264
                    assert not issubclass(
                        child_config, parent_config
Lysandre Debut's avatar
Lysandre Debut committed
265
                    ), f"{child_config.__name__} is child of {parent_config.__name__}"
266
267
268
269
270
271
272
273
274

                    # Tuplify child_model and parent_model since some of them could be tuples.
                    if not isinstance(child_model, (list, tuple)):
                        child_model = (child_model,)
                    if not isinstance(parent_model, (list, tuple)):
                        parent_model = (parent_model,)

                    for child, parent in [(a, b) for a in child_model for b in parent_model]:
                        assert not issubclass(child, parent), f"{child.__name__} is child of {parent.__name__}"