bert.mdx 5.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# BERT

## Overview

The BERT model was proposed in [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a
bidirectional transformer pretrained using a combination of masked language modeling objective and next sentence
prediction on a large corpus comprising the Toronto Book Corpus and Wikipedia.

The abstract from the paper is the following:

*We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations
from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional
representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result,
the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models
for a wide range of tasks, such as question answering and language inference, without substantial task-specific
architecture modifications.*

*BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural
language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI
accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute
improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).*

Tips:

- BERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
  the left.
- BERT was trained with the masked language modeling (MLM) and next sentence prediction (NSP) objectives. It is
  efficient at predicting masked tokens and at NLU in general, but is not optimal for text generation.

This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/google-research/bert).

## BertConfig

[[autodoc]] BertConfig
    - all

## BertTokenizer

[[autodoc]] BertTokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

## BertTokenizerFast

[[autodoc]] BertTokenizerFast

## Bert specific outputs

[[autodoc]] models.bert.modeling_bert.BertForPreTrainingOutput

[[autodoc]] models.bert.modeling_tf_bert.TFBertForPreTrainingOutput

[[autodoc]] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput

## BertModel

[[autodoc]] BertModel
    - forward

## BertForPreTraining

[[autodoc]] BertForPreTraining
    - forward

## BertLMHeadModel

[[autodoc]] BertLMHeadModel
    - forward

## BertForMaskedLM

[[autodoc]] BertForMaskedLM
    - forward

## BertForNextSentencePrediction

[[autodoc]] BertForNextSentencePrediction
    - forward

## BertForSequenceClassification

[[autodoc]] BertForSequenceClassification
    - forward

## BertForMultipleChoice

[[autodoc]] BertForMultipleChoice
    - forward

## BertForTokenClassification

[[autodoc]] BertForTokenClassification
    - forward

## BertForQuestionAnswering

[[autodoc]] BertForQuestionAnswering
    - forward

## TFBertModel

[[autodoc]] TFBertModel
    - call

## TFBertForPreTraining

[[autodoc]] TFBertForPreTraining
    - call

## TFBertModelLMHeadModel

[[autodoc]] TFBertLMHeadModel
    - call

## TFBertForMaskedLM

[[autodoc]] TFBertForMaskedLM
    - call

## TFBertForNextSentencePrediction

[[autodoc]] TFBertForNextSentencePrediction
    - call

## TFBertForSequenceClassification

[[autodoc]] TFBertForSequenceClassification
    - call

## TFBertForMultipleChoice

[[autodoc]] TFBertForMultipleChoice
    - call

## TFBertForTokenClassification

[[autodoc]] TFBertForTokenClassification
    - call

## TFBertForQuestionAnswering

[[autodoc]] TFBertForQuestionAnswering
    - call

## FlaxBertModel

[[autodoc]] FlaxBertModel
    - __call__

## FlaxBertForPreTraining

[[autodoc]] FlaxBertForPreTraining
    - __call__

## FlaxBertForMaskedLM

[[autodoc]] FlaxBertForMaskedLM
    - __call__

## FlaxBertForNextSentencePrediction

[[autodoc]] FlaxBertForNextSentencePrediction
    - __call__

## FlaxBertForSequenceClassification

[[autodoc]] FlaxBertForSequenceClassification
    - __call__

## FlaxBertForMultipleChoice

[[autodoc]] FlaxBertForMultipleChoice
    - __call__

## FlaxBertForTokenClassification

[[autodoc]] FlaxBertForTokenClassification
    - __call__

## FlaxBertForQuestionAnswering

[[autodoc]] FlaxBertForQuestionAnswering
    - __call__