test_pipelines_conversational.py 17 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Yih-Dar's avatar
Yih-Dar committed
15
import gc
16
17
import unittest

18
from transformers import (
19
20
21
22
    MODEL_FOR_CAUSAL_LM_MAPPING,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
23
    AutoModelForCausalLM,
24
25
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
26
27
    BlenderbotSmallForConditionalGeneration,
    BlenderbotSmallTokenizer,
28
29
    Conversation,
    ConversationalPipeline,
30
    TFAutoModelForCausalLM,
31
32
    pipeline,
)
Yih-Dar's avatar
Yih-Dar committed
33
34
35
36
37
38
39
40
from transformers.testing_utils import (
    is_pipeline_test,
    is_torch_available,
    require_tf,
    require_torch,
    slow,
    torch_device,
)
41

42
from .test_pipelines_common import ANY
43
44
45
46
47


DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0


48
@is_pipeline_test
49
class ConversationalPipelineTests(unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
50
51
52
53
54
55
56
57
58
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        if is_torch_available():
            import torch

            torch.cuda.empty_cache()

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    model_mapping = dict(
        list(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.items())
        if MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
        else [] + list(MODEL_FOR_CAUSAL_LM_MAPPING.items())
        if MODEL_FOR_CAUSAL_LM_MAPPING
        else []
    )
    tf_model_mapping = dict(
        list(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.items())
        if TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
        else [] + list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.items())
        if TF_MODEL_FOR_CAUSAL_LM_MAPPING
        else []
    )

74
    def get_test_pipeline(self, model, tokenizer, processor):
75
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
76
77
78
        return conversation_agent, [Conversation("Hi there!")]

    def run_pipeline_test(self, conversation_agent, _):
79
80
81
82
83
84
85
86
87
        # Simple
        outputs = conversation_agent(Conversation("Hi there!"))
        self.assertEqual(outputs, Conversation(past_user_inputs=["Hi there!"], generated_responses=[ANY(str)]))

        # Single list
        outputs = conversation_agent([Conversation("Hi there!")])
        self.assertEqual(outputs, Conversation(past_user_inputs=["Hi there!"], generated_responses=[ANY(str)]))

        # Batch
88
89
90
91
92
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        conversation_2 = Conversation("What's the last book you have read?")
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)

93
94
        outputs = conversation_agent([conversation_1, conversation_2])
        self.assertEqual(outputs, [conversation_1, conversation_2])
95
        self.assertEqual(
96
            outputs,
97
98
99
            [
                Conversation(
                    past_user_inputs=["Going to the movies tonight - any suggestions?"],
100
                    generated_responses=[ANY(str)],
101
                ),
102
                Conversation(past_user_inputs=["What's the last book you have read?"], generated_responses=[ANY(str)]),
103
104
105
106
107
            ],
        )

        # One conversation with history
        conversation_2.add_user_input("Why do you recommend it?")
108
109
        outputs = conversation_agent(conversation_2)
        self.assertEqual(outputs, conversation_2)
110
        self.assertEqual(
111
            outputs,
112
113
            Conversation(
                past_user_inputs=["What's the last book you have read?", "Why do you recommend it?"],
114
                generated_responses=[ANY(str), ANY(str)],
115
116
            ),
        )
117
118
119
120
        with self.assertRaises(ValueError):
            conversation_agent("Hi there!")
        with self.assertRaises(ValueError):
            conversation_agent(Conversation())
121
        # Conversation have been consumed and are not valid anymore
122
        # Inactive conversations passed to the pipeline raise a ValueError
123
124
        with self.assertRaises(ValueError):
            conversation_agent(conversation_2)
125
126
127
128
129

    @require_torch
    @slow
    def test_integration_torch_conversation(self):
        # When
130
        conversation_agent = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
131
132
133
134
135
136
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        conversation_2 = Conversation("What's the last book you have read?")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)
        # When
137
        result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
138
139
140
141
142
143
144
145
146
147
148
149
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 1)
        self.assertEqual(len(result[1].past_user_inputs), 1)
        self.assertEqual(len(result[0].generated_responses), 1)
        self.assertEqual(len(result[1].generated_responses), 1)
        self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
        self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
        self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
        self.assertEqual(result[1].generated_responses[0], "The Last Question")
        # When
        conversation_2.add_user_input("Why do you recommend it?")
150
        result = conversation_agent(conversation_2, do_sample=False, max_length=1000)
151
152
153
154
155
156
157
158
159
160
161
        # Then
        self.assertEqual(result, conversation_2)
        self.assertEqual(len(result.past_user_inputs), 2)
        self.assertEqual(len(result.generated_responses), 2)
        self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
        self.assertEqual(result.generated_responses[1], "It's a good book.")

    @require_torch
    @slow
    def test_integration_torch_conversation_truncated_history(self):
        # When
162
        conversation_agent = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
163
164
165
166
        conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        # When
167
        result = conversation_agent(conversation_1, do_sample=False, max_length=36)
168
169
170
171
172
173
174
175
        # Then
        self.assertEqual(result, conversation_1)
        self.assertEqual(len(result.past_user_inputs), 1)
        self.assertEqual(len(result.generated_responses), 1)
        self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
        self.assertEqual(result.generated_responses[0], "The Big Lebowski")
        # When
        conversation_1.add_user_input("Is it an action movie?")
176
        result = conversation_agent(conversation_1, do_sample=False, max_length=36)
177
178
179
180
181
182
        # Then
        self.assertEqual(result, conversation_1)
        self.assertEqual(len(result.past_user_inputs), 2)
        self.assertEqual(len(result.generated_responses), 2)
        self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
        self.assertEqual(result.generated_responses[1], "It's a comedy.")
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    @require_torch
    def test_small_model_pt(self):
        tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
        model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
        conversation = Conversation("hello")
        output = conversation_agent(conversation)
        self.assertEqual(output, Conversation(past_user_inputs=["hello"], generated_responses=["Hi"]))

    @require_tf
    def test_small_model_tf(self):
        tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
        model = TFAutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
        conversation = Conversation("hello")
        output = conversation_agent(conversation)
        self.assertEqual(output, Conversation(past_user_inputs=["hello"], generated_responses=["Hi"]))

202
203
204
205
206
    @require_torch
    @slow
    def test_integration_torch_conversation_dialogpt_input_ids(self):
        tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
        model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
207
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
208
209

        conversation_1 = Conversation("hello")
210
        inputs = conversation_agent.preprocess(conversation_1)
211
212
213
        self.assertEqual(inputs["input_ids"].tolist(), [[31373, 50256]])

        conversation_2 = Conversation("how are you ?", past_user_inputs=["hello"], generated_responses=["Hi there!"])
214
        inputs = conversation_agent.preprocess(conversation_2)
215
216
217
218
219
220
221
222
223
        self.assertEqual(
            inputs["input_ids"].tolist(), [[31373, 50256, 17250, 612, 0, 50256, 4919, 389, 345, 5633, 50256]]
        )

    @require_torch
    @slow
    def test_integration_torch_conversation_blenderbot_400M_input_ids(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
        model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
224
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
225
226
227

        # test1
        conversation_1 = Conversation("hello")
228
        inputs = conversation_agent.preprocess(conversation_1)
229
230
231
232
233
234
235
236
237
238
        self.assertEqual(inputs["input_ids"].tolist(), [[1710, 86, 2]])

        # test2
        conversation_1 = Conversation(
            "I like lasagne.",
            past_user_inputs=["hello"],
            generated_responses=[
                " Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie."
            ],
        )
239
        inputs = conversation_agent.preprocess(conversation_1)
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        self.assertEqual(
            inputs["input_ids"].tolist(),
            [
                # This should be compared with the same conversation on ParlAI `safe_interactive` demo.
                [
                    1710,  # hello
                    86,
                    228,  # Double space
                    228,
                    946,
                    304,
                    398,
                    6881,
                    558,
                    964,
                    38,
                    452,
                    315,
                    265,
                    6252,
                    452,
                    322,
                    968,
                    6884,
                    3146,
                    278,
                    306,
                    265,
                    617,
                    87,
                    388,
                    75,
                    341,
                    286,
                    521,
                    21,
                    228,  # Double space
                    228,
                    281,  # I like lasagne.
                    398,
                    6881,
                    558,
                    964,
                    21,
                    2,  # EOS
285
                ],
286
287
288
            ],
        )

289
290
291
292
293
    @require_torch
    @slow
    def test_integration_torch_conversation_blenderbot_400M(self):
        tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
        model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot-400M-distill")
294
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer)
295
296

        conversation_1 = Conversation("hello")
297
        result = conversation_agent(
298
299
300
301
302
303
304
305
306
307
            conversation_1,
        )
        self.assertEqual(
            result.generated_responses[0],
            # ParlAI implementation output, we have a different one, but it's our
            # second best, you can check by using num_return_sequences=10
            # " Hello! How are you? I'm just getting ready to go to work, how about you?",
            " Hello! How are you doing today? I just got back from a walk with my dog.",
        )

308
        conversation_1 = Conversation("Lasagne   hello")
309
        result = conversation_agent(conversation_1, encoder_no_repeat_ngram_size=3)
310
311
        self.assertEqual(
            result.generated_responses[0],
312
            " Do you like lasagne? It is a traditional Italian dish consisting of a shepherd's pie.",
313
314
315
316
317
        )

        conversation_1 = Conversation(
            "Lasagne   hello   Lasagne is my favorite Italian dish. Do you like lasagne?   I like lasagne."
        )
318
        result = conversation_agent(
319
320
321
322
323
            conversation_1,
            encoder_no_repeat_ngram_size=3,
        )
        self.assertEqual(
            result.generated_responses[0],
324
            " Me too. I like how it can be topped with vegetables, meats, and condiments.",
325
326
        )

327
328
329
330
    @require_torch
    @slow
    def test_integration_torch_conversation_encoder_decoder(self):
        # When
Lysandre Debut's avatar
Lysandre Debut committed
331
332
        tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
        model = AutoModelForSeq2SeqLM.from_pretrained("facebook/blenderbot_small-90M")
333
        conversation_agent = ConversationalPipeline(model=model, tokenizer=tokenizer, device=DEFAULT_DEVICE_NUM)
334
335
336
337
338
339
340

        conversation_1 = Conversation("My name is Sarah and I live in London")
        conversation_2 = Conversation("Going to the movies tonight, What movie would you recommend? ")
        # Then
        self.assertEqual(len(conversation_1.past_user_inputs), 0)
        self.assertEqual(len(conversation_2.past_user_inputs), 0)
        # When
341
        result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 1)
        self.assertEqual(len(result[1].past_user_inputs), 1)
        self.assertEqual(len(result[0].generated_responses), 1)
        self.assertEqual(len(result[1].generated_responses), 1)
        self.assertEqual(result[0].past_user_inputs[0], "My name is Sarah and I live in London")
        self.assertEqual(
            result[0].generated_responses[0],
            "hi sarah, i live in london as well. do you have any plans for the weekend?",
        )
        self.assertEqual(
            result[1].past_user_inputs[0], "Going to the movies tonight, What movie would you recommend? "
        )
        self.assertEqual(
            result[1].generated_responses[0], "i don't know... i'm not really sure. what movie are you going to see?"
        )
        # When
        conversation_1.add_user_input("Not yet, what about you?")
        conversation_2.add_user_input("What's your name?")
362
        result = conversation_agent([conversation_1, conversation_2], do_sample=False, max_length=1000)
363
364
365
366
367
368
369
370
371
372
        # Then
        self.assertEqual(result, [conversation_1, conversation_2])
        self.assertEqual(len(result[0].past_user_inputs), 2)
        self.assertEqual(len(result[1].past_user_inputs), 2)
        self.assertEqual(len(result[0].generated_responses), 2)
        self.assertEqual(len(result[1].generated_responses), 2)
        self.assertEqual(result[0].past_user_inputs[1], "Not yet, what about you?")
        self.assertEqual(result[0].generated_responses[1], "i don't have any plans yet. i'm not sure what to do yet.")
        self.assertEqual(result[1].past_user_inputs[1], "What's your name?")
        self.assertEqual(result[1].generated_responses[1], "i don't have a name, but i'm going to see a horror movie.")
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    @require_torch
    @slow
    def test_from_pipeline_conversation(self):
        model_id = "facebook/blenderbot_small-90M"

        # from model id
        conversation_agent_from_model_id = pipeline("conversational", model=model_id, tokenizer=model_id)

        # from model object
        model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_id)
        tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_id)
        conversation_agent_from_model = pipeline("conversational", model=model, tokenizer=tokenizer)

        conversation = Conversation("My name is Sarah and I live in London")
        conversation_copy = Conversation("My name is Sarah and I live in London")

        result_model_id = conversation_agent_from_model_id([conversation])
        result_model = conversation_agent_from_model([conversation_copy])

        # check for equality
        self.assertEqual(
            result_model_id.generated_responses[0],
            "hi sarah, i live in london as well. do you have any plans for the weekend?",
        )
        self.assertEqual(
            result_model_id.generated_responses[0],
            result_model.generated_responses[0],
        )