test_trainer_utils.py 19.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import copy
17
18
19
20
import unittest

import numpy as np

21
22
from transformers.testing_utils import require_accelerate, require_torch
from transformers.trainer_utils import find_executable_batch_size
23
from transformers.utils import is_torch_available
24
25
26


if is_torch_available():
Sylvain Gugger's avatar
Sylvain Gugger committed
27
    import torch
28
    from torch import nn
29
    from torch.utils.data import IterableDataset
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31

    from transformers.modeling_outputs import SequenceClassifierOutput
32
    from transformers.tokenization_utils_base import BatchEncoding
33
34
    from transformers.trainer_pt_utils import (
        DistributedLengthGroupedSampler,
35
        DistributedSamplerWithLoop,
36
        DistributedTensorGatherer,
37
        IterableDatasetShard,
38
39
        LabelSmoother,
        LengthGroupedSampler,
40
        SequentialDistributedSampler,
41
        ShardSampler,
42
        get_parameter_names,
43
    )
44

45
    class TstLayer(nn.Module):
46
47
        def __init__(self, hidden_size):
            super().__init__()
48
49
50
51
52
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
53
54

        def forward(self, x):
55
56
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
57
58
            return self.ln2(x + h + self.bias)

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    class RandomIterableDataset(IterableDataset):
        # For testing, an iterable dataset of random length
        def __init__(self, p_stop=0.01, max_length=1000):
            self.p_stop = p_stop
            self.max_length = max_length
            self.generator = torch.Generator()

        def __iter__(self):
            count = 0
            stop = False
            while not stop and count < self.max_length:
                yield count
                count += 1
                number = torch.rand(1, generator=self.generator).item()
                stop = number < self.p_stop

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

@require_torch
class TrainerUtilsTest(unittest.TestCase):
    def test_distributed_tensor_gatherer(self):
        # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
        world_size = 4
        num_samples = 21
        input_indices = [
            [0, 1, 6, 7, 12, 13, 18, 19],
            [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
            [5, 11, 17, 2],
        ]

        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices in input_indices:
            gatherer.add_arrays(predictions[indices])
        result = gatherer.finalize()
        self.assertTrue(np.array_equal(result, predictions))

        # With nested tensors
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices in input_indices:
            gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]])
        result = gatherer.finalize()
        self.assertTrue(isinstance(result, list))
101
        self.assertEqual(len(result), 2)
102
        self.assertTrue(isinstance(result[1], list))
103
        self.assertEqual(len(result[1]), 2)
104
105
106
        self.assertTrue(np.array_equal(result[0], predictions))
        self.assertTrue(np.array_equal(result[1][0], predictions))
        self.assertTrue(np.array_equal(result[1][1], predictions))
Sylvain Gugger's avatar
Sylvain Gugger committed
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def test_distributed_tensor_gatherer_different_shapes(self):
        # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1
        world_size = 4
        num_samples = 21
        input_indices = [
            [0, 1, 6, 7, 12, 13, 18, 19],
            [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1],
            [5, 11, 17, 2],
        ]
        sequence_lengths = [8, 10, 13]

        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays(predictions[indices, :seq_length])
        result = gatherer.finalize()

        # Remove the extra samples added at the end for a round multiple of num processes.
        actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]]
        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length]))

        # With nested tensors
        predictions = np.random.normal(size=(num_samples, 13))
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]])
        result = gatherer.finalize()

        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length]))
        self.assertTrue(np.array_equal(result[1], predictions))

        # Check if works if varying seq_length is second
        gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples)
        for indices, seq_length in zip(input_indices, sequence_lengths):
            gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]])
        result = gatherer.finalize()

        self.assertTrue(np.array_equal(result[0], predictions))
        for indices, seq_length in zip(actual_indices, sequence_lengths):
            self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length]))

Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
153
154
155
    def test_label_smoothing(self):
        epsilon = 0.1
        num_labels = 12
        random_logits = torch.randn(4, 5, num_labels)
        random_labels = torch.randint(0, num_labels, (4, 5))
156
        loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
157
        model_output = SequenceClassifierOutput(logits=random_logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
158
        label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
159
        log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
Sylvain Gugger's avatar
Sylvain Gugger committed
160
161
162
163
164
165
166
167
        expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean()
        self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))

        # With a few -100 labels
        random_labels[0, 1] = -100
        random_labels[2, 1] = -100
        random_labels[2, 3] = -100

168
        loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1))
169
        model_output = SequenceClassifierOutput(logits=random_logits)
Sylvain Gugger's avatar
Sylvain Gugger committed
170
        label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels)
171
        log_probs = -nn.functional.log_softmax(random_logits, dim=-1)
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
176
177
        # Mask the log probs with the -100 labels
        log_probs[0, 1] = 0.0
        log_probs[2, 1] = 0.0
        log_probs[2, 3] = 0.0
        expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17)
        self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss))
178
179
180
181
182
183
184

    def test_group_by_length(self):
        # Get some inputs of random lengths
        lengths = torch.randint(0, 25, (100,)).tolist()
        # Put one bigger than the others to check it ends up in first position
        lengths[32] = 50

185
        indices = list(LengthGroupedSampler(4, lengths=lengths))
186
187
188
189
190
        # The biggest element should be first
        self.assertEqual(lengths[indices[0]], 50)
        # The indices should be a permutation of range(100)
        self.assertEqual(list(sorted(indices)), list(range(100)))

191
192
193
194
195
196
197
198
199
    def test_group_by_length_with_dict(self):
        # Get some inputs of random lengths
        data = []
        for _ in range(6):
            input_ids = torch.randint(0, 25, (100,)).tolist()
            data.append({"input_ids": input_ids})
        # Put one bigger than the others to check it ends up in first position
        data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()

200
        indices = list(LengthGroupedSampler(4, dataset=data))
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        # The biggest element should be first
        self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
        # The indices should be a permutation of range(6)
        self.assertEqual(list(sorted(indices)), list(range(6)))

    def test_group_by_length_with_batch_encoding(self):
        # Get some inputs of random lengths
        data = []
        for _ in range(6):
            input_ids = torch.randint(0, 25, (100,)).tolist()
            data.append(BatchEncoding({"input_ids": input_ids}))
        # Put one bigger than the others to check it ends up in first position
        data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist()

215
        indices = list(LengthGroupedSampler(4, dataset=data))
216
217
218
219
220
        # The biggest element should be first
        self.assertEqual(len(data[indices[0]]["input_ids"]), 105)
        # The indices should be a permutation of range(6)
        self.assertEqual(list(sorted(indices)), list(range(6)))

221
222
223
224
225
226
    def test_distributed_length_grouped(self):
        # Get some inputs of random lengths
        lengths = torch.randint(0, 25, (100,)).tolist()
        # Put one bigger than the others to check it ends up in first position
        lengths[32] = 50

227
228
        indices_process_0 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=0, lengths=lengths))
        indices_process_1 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=1, lengths=lengths))
229
230
231
232
        # The biggest element should be first
        self.assertEqual(lengths[indices_process_0[0]], 50)
        # The indices should be a permutation of range(100)
        self.assertEqual(list(sorted(indices_process_0 + indices_process_1)), list(range(100)))
233
234

    def test_get_parameter_names(self):
235
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
236
237
        # fmt: off
        self.assertEqual(
238
            get_parameter_names(model, [nn.LayerNorm]),
239
240
241
            ['0.linear1.weight', '0.linear1.bias', '0.linear2.weight', '0.linear2.bias', '0.bias', '1.0.linear1.weight', '1.0.linear1.bias', '1.0.linear2.weight', '1.0.linear2.bias', '1.0.bias', '1.1.linear1.weight', '1.1.linear1.bias', '1.1.linear2.weight', '1.1.linear2.bias', '1.1.bias']
        )
        # fmt: on
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    def test_distributed_sampler_with_loop(self):
        batch_size = 16
        for length in [23, 64, 123]:
            dataset = list(range(length))
            shard1 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=0)
            shard2 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=1)

            # Set seeds
            shard1.set_epoch(0)
            shard2.set_epoch(0)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            self.assertTrue(len(samples1) % batch_size == 0)
            self.assertTrue(len(samples2) % batch_size == 0)

            total = []
            for sample1, sample2 in zip(samples1, samples2):
                total += [sample1, sample2]

            self.assertEqual(set(total[:length]), set(dataset))
            self.assertEqual(set(total[length:]), set(total[: (len(total) - length)]))
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    def test_sequential_distributed_sampler(self):
        batch_size = 16
        for length in [23, 64, 123]:
            dataset = list(range(length))
            shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0)
            shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            total = samples1 + samples2

            self.assertListEqual(total[:length], dataset)
            self.assertListEqual(total[length:], dataset[: (len(total) - length)])

            # With a batch_size passed
            shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0, batch_size=batch_size)
            shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1, batch_size=batch_size)

            # Sample
            samples1 = list(shard1)
            samples2 = list(shard2)

            self.assertTrue(len(samples1) % batch_size == 0)
            self.assertTrue(len(samples2) % batch_size == 0)

            total = samples1 + samples2

            self.assertListEqual(total[:length], dataset)
            self.assertListEqual(total[length:], dataset[: (len(total) - length)])
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

    def check_iterable_dataset_shard(self, dataset, batch_size, drop_last, num_processes=2, epoch=0):
        # Set the seed for the base dataset to get the proper reference.
        dataset.generator.manual_seed(epoch)
        reference = list(dataset)

        shards = [
            IterableDatasetShard(
                dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
            )
            for i in range(num_processes)
        ]
        for shard in shards:
            shard.set_epoch(epoch)
        shard_lists = [list(shard) for shard in shards]

        for shard in shard_lists:
            # All shards have a number of samples that is a round multiple of batch size
            self.assertTrue(len(shard) % batch_size == 0)
            # All shards have the same number of samples
            self.assertEqual(len(shard), len(shard_lists[0]))

321
322
323
324
        for shard in shards:
            # All shards know the total number of samples
            self.assertEqual(shard.num_examples, len(reference))

325
326
327
328
329
330
331
332
333
334
335
336
        observed = []
        for idx in range(0, len(shard_lists[0]), batch_size):
            for shard in shard_lists:
                observed += shard[idx : idx + batch_size]

        # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
        # batch_size
        if not drop_last:
            while len(reference) < len(observed):
                reference += reference
        self.assertListEqual(observed, reference[: len(observed)])

337
338
339
340
341
342
343
344
345
346
347
348
349
        # Check equivalence between IterableDataset and ShardSampler
        dataset.generator.manual_seed(epoch)
        reference = list(dataset)

        sampler_shards = [
            ShardSampler(
                reference, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
            )
            for i in range(num_processes)
        ]
        for shard, sampler_shard in zip(shard_lists, sampler_shards):
            self.assertListEqual(shard, list(sampler_shard))

350
351
352
353
    def test_iterable_dataset_shard(self):
        dataset = RandomIterableDataset()

        self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0)
354
        self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=2, epoch=0)
355
356

        self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42)
357
358
        self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=3, epoch=42)

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    def test_iterable_dataset_shard_with_length(self):
        sampler_shards = [
            IterableDatasetShard(list(range(100)), batch_size=4, drop_last=True, num_processes=2, process_index=i)
            for i in range(2)
        ]

        # Build expected shards: each process will have batches of size 4 until there is not enough elements to
        # form two full batches (so we stop at 96 = (100 // (4 * 2)) * 4)
        expected_shards = [[], []]
        current_shard = 0
        for i in range(0, 96, 4):
            expected_shards[current_shard].extend(list(range(i, i + 4)))
            current_shard = 1 - current_shard

        self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
        self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])

        sampler_shards = [
            IterableDatasetShard(list(range(100)), batch_size=4, drop_last=False, num_processes=2, process_index=i)
            for i in range(2)
        ]
        # When drop_last=False, we get two last full batches by looping back to the beginning.
        expected_shards[0].extend(list(range(96, 100)))
        expected_shards[1].extend(list(range(0, 4)))

        self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards)
        self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards])

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    def check_shard_sampler(self, dataset, batch_size, drop_last, num_processes=2):
        shards = [
            ShardSampler(
                dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i
            )
            for i in range(num_processes)
        ]
        shard_lists = [list(shard) for shard in shards]

        for shard in shard_lists:
            # All shards have a number of samples that is a round multiple of batch size
            self.assertTrue(len(shard) % batch_size == 0)
            # All shards have the same number of samples
            self.assertEqual(len(shard), len(shard_lists[0]))

        observed = []
        for idx in range(0, len(shard_lists[0]), batch_size):
            for shard in shard_lists:
                observed += shard[idx : idx + batch_size]

        # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of
        # batch_size
        reference = copy.copy(dataset)
        if not drop_last:
            while len(reference) < len(observed):
                reference += reference
        self.assertListEqual(observed, reference[: len(observed)])

    def test_shard_sampler(self):
        for n_elements in [64, 123]:
            dataset = list(range(n_elements))

            self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=2)
            self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=2)

            self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=3)
            self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=3)
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

    @require_accelerate
    def test_executable_batch_size(self):
        batch_sizes = []

        @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=True)
        def mock_training_loop_function(batch_size):
            nonlocal batch_sizes
            batch_sizes.append(batch_size)
            if batch_size > 16:
                raise RuntimeError("CUDA out of memory.")

        mock_training_loop_function()
        self.assertEqual(batch_sizes, [64, 32, 16])

    @require_accelerate
    def test_executable_batch_size_no_search(self):
        batch_sizes = []

        @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
        def mock_training_loop_function(batch_size):
            nonlocal batch_sizes
            batch_sizes.append(batch_size)

        mock_training_loop_function()
        self.assertEqual(batch_sizes, [64])

    @require_accelerate
    def test_executable_batch_size_with_error(self):
        @find_executable_batch_size(starting_batch_size=64, auto_find_batch_size=False)
        def mock_training_loop_function(batch_size):
            raise RuntimeError("CUDA out of memory.")

        with self.assertRaises(RuntimeError) as cm:
            mock_training_loop_function()
            self.assertEqual("CUDA out of memory", cm.args[0])