README.md 4.87 KB
Newer Older
Savaş Yıldırım's avatar
Savaş Yıldırım committed
1
# Bert-base Turkish Sentiment Model
Savaş Yıldırım's avatar
Savaş Yıldırım committed
2
3
4
5
6
7

https://huggingface.co/savasy/bert-base-turkish-sentiment-cased

This model is used for Sentiment Analysis, which is based on BERTurk for Turkish Language https://huggingface.co/dbmdz/bert-base-turkish-cased


8
## Dataset
Savaş Yıldırım's avatar
Savaş Yıldırım committed
9

10
The dataset is taken from the studies [[2]](#paper-2) and [[3]](#paper-3), and merged.
Savaş Yıldırım's avatar
Savaş Yıldırım committed
11
12

* The study [2] gathered movie and product reviews. The products are book, DVD, electronics, and kitchen.
13
The movie dataset is taken from a cinema Web page ([Beyazperde](www.beyazperde.com)) with
Savaş Yıldırım's avatar
Savaş Yıldırım committed
14
15
16
17
18
19
20
21
5331 positive and 5331 negative sentences. Reviews in the Web page are marked in
scale from 0 to 5 by the users who made the reviews. The study considered a review
sentiment positive if the rating is equal to or bigger than 4, and negative if it is less
or equal to 2. They also built Turkish product review dataset from an online retailer
Web page. They constructed benchmark dataset consisting of reviews regarding some
products (book, DVD, etc.). Likewise, reviews are marked in the range from 1 to 5,
and majority class of reviews are 5. Each category has 700 positive and 700 negative
reviews in which average rating of negative reviews is 2.27 and of positive reviews
22
is 4.5. This dataset is also used by the study [[1]](#paper-1).
Savaş Yıldırım's avatar
Savaş Yıldırım committed
23

24
* The study [[3]](#paper-3) collected tweet dataset. They proposed a new approach for automatically classifying the sentiment of microblog messages. The proposed approach is based on utilizing robust feature representation and fusion. 
Savaş Yıldırım's avatar
Savaş Yıldırım committed
25

Savaş Yıldırım's avatar
Savaş Yıldırım committed
26
27
28
29
30
31
32
33
*Merged Dataset* 

| *size*   | *data* |
|--------|----|
|   8000 |dev.tsv|
|   8262 |test.tsv|
|  32000 |train.tsv|
|  *48290* |*total*|
Savaş Yıldırım's avatar
Savaş Yıldırım committed
34

35
### The dataset is used by following papers
Savaş Yıldırım's avatar
Savaş Yıldırım committed
36

37
38
39
<a id="paper-1">[1]</a> Yildirim, Savaş. (2020). Comparing Deep Neural Networks to Traditional Models for Sentiment Analysis in Turkish Language. 10.1007/978-981-15-1216-2_12. 

<a id="paper-2">[2]</a> Demirtas, Erkin and Mykola Pechenizkiy. 2013. Cross-lingual polarity detection with machine translation. In Proceedings of the Second International Workshop on Issues of Sentiment
Savaş Yıldırım's avatar
Savaş Yıldırım committed
40
Discovery and Opinion Mining (WISDOM ’13)
Savaş Yıldırım's avatar
Savaş Yıldırım committed
41

42
<a id="paper-3">[3]</a> Hayran, A.,   Sert, M. (2017), "Sentiment Analysis on Microblog Data based on Word Embedding and Fusion Techniques", IEEE 25th Signal Processing and Communications Applications Conference (SIU 2017), Belek, Turkey
Savaş Yıldırım's avatar
Savaş Yıldırım committed
43

44
45
46
47

## Training

```shell
Savaş Yıldırım's avatar
Savaş Yıldırım committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
export GLUE_DIR="./sst-2-newall"
export TASK_NAME=SST-2

python3 run_glue.py \
  --model_type bert \
  --model_name_or_path dbmdz/bert-base-turkish-uncased\
  --task_name "SST-2" \
  --do_train \
  --do_eval \
  --data_dir "./sst-2-newall" \
  --max_seq_length 128 \
  --per_gpu_train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3.0 \
  --output_dir "./model"
```


66
## Results
Savaş Yıldırım's avatar
Savaş Yıldırım committed
67

68
69
70
71
72
73
74
> 05/10/2020 17:00:43 - INFO - transformers.trainer -   \*\*\*\*\* Running Evaluation \*\*\*\*\*  
> 05/10/2020 17:00:43 - INFO - transformers.trainer -     Num examples = 7999  
> 05/10/2020 17:00:43 - INFO - transformers.trainer -     Batch size = 8  
> Evaluation: 100% 1000/1000 [00:34<00:00, 29.04it/s]  
> 05/10/2020 17:01:17 - INFO - \_\_main__ -   \*\*\*\*\* Eval results sst-2 \*\*\*\*\*  
> 05/10/2020 17:01:17 - INFO - \_\_main__ -     acc = 0.9539942492811602  
> 05/10/2020 17:01:17 - INFO - \_\_main__ -     loss = 0.16348013816401363
Savaş Yıldırım's avatar
Savaş Yıldırım committed
75

76
Accuracy is about **95.4%**
Savaş Yıldırım's avatar
Savaş Yıldırım committed
77
78


79
## Code Usage
Savaş Yıldırım's avatar
Savaş Yıldırım committed
80

81
```python
Savaş Yıldırım's avatar
Savaş Yıldırım committed
82
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
83

Savaş Yıldırım's avatar
Savaş Yıldırım committed
84
85
86
87
model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
sa= pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)

88
p = sa("bu telefon modelleri çok kaliteli , her parçası çok özel bence")
Savaş Yıldırım's avatar
Savaş Yıldırım committed
89
print(p)
90
91
92
# [{'label': 'LABEL_1', 'score': 0.9871089}]
print(p[0]['label'] == 'LABEL_1')
# True
Savaş Yıldırım's avatar
Savaş Yıldırım committed
93

94
p = sa("Film çok kötü ve çok sahteydi")
Savaş Yıldırım's avatar
Savaş Yıldırım committed
95
print(p)
96
97
98
# [{'label': 'LABEL_0', 'score': 0.9975505}]
print(p[0]['label'] == 'LABEL_1')
# False
Savaş Yıldırım's avatar
Savaş Yıldırım committed
99
```
Savaş Yıldırım's avatar
Savaş Yıldırım committed
100
101


102
103
## Test
### Data
Savaş Yıldırım's avatar
Savaş Yıldırım committed
104

105
Suppose your file has lots of lines of comment and label (1 or 0) at the end  (tab seperated)
Savaş Yıldırım's avatar
Savaş Yıldırım committed
106

107
108
> comment1 ... \t label  
> comment2 ... \t label  
Savaş Yıldırım's avatar
Savaş Yıldırım committed
109
110
> ...

111
### Code
Savaş Yıldırım's avatar
Savaş Yıldırım committed
112

113
```python
Savaş Yıldırım's avatar
Savaş Yıldırım committed
114
115
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline

Savaş Yıldırım's avatar
Savaş Yıldırım committed
116
117
model = AutoModelForSequenceClassification.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
tokenizer = AutoTokenizer.from_pretrained("savasy/bert-base-turkish-sentiment-cased")
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
sa = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model)

input_file = "/path/to/your/file/yourfile.tsv"

i, crr = 0, 0
for line in open(input_file):
    lines = line.strip().split("\t")
    if len(lines) == 2:
        
        i = i + 1
        if i%100 == 0:
            print(i)
        
        pred = sa(lines[0])
        pred = pred[0]["label"].split("_")[1]
        
        if pred == lines[1]:
        crr = crr + 1
Savaş Yıldırım's avatar
Savaş Yıldırım committed
136
137
138

print(crr, i, crr/i)
```