test_feature_extraction_flava.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# coding=utf-8
# Copyright 2022 Meta Platforms authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import unittest

import numpy as np

from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available

from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

    from transformers import FlavaFeatureExtractor
34
    from transformers.image_utils import PILImageResampling
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    from transformers.models.flava.feature_extraction_flava import (
        FLAVA_CODEBOOK_MEAN,
        FLAVA_CODEBOOK_STD,
        FLAVA_IMAGE_MEAN,
        FLAVA_IMAGE_STD,
    )
else:
    FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None


class FlavaFeatureExtractionTester(unittest.TestCase):
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
        size=224,
        do_center_crop=True,
        crop_size=224,
        resample=None,
        do_normalize=True,
        image_mean=FLAVA_IMAGE_MEAN,
        image_std=FLAVA_IMAGE_STD,
        input_size_patches=14,
        total_mask_patches=75,
        mask_group_max_patches=None,
        mask_group_min_patches=16,
        mask_group_min_aspect_ratio=0.3,
        mask_group_max_aspect_ratio=None,
        codebook_do_resize=True,
        codebook_size=112,
        codebook_resample=None,
        codebook_do_center_crop=True,
        codebook_crop_size=112,
        codebook_do_map_pixels=True,
        codebook_do_normalize=True,
        codebook_image_mean=FLAVA_CODEBOOK_MEAN,
        codebook_image_std=FLAVA_CODEBOOK_STD,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.do_resize = do_resize
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.size = size
84
        self.resample = resample if resample is not None else PILImageResampling.BICUBIC
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size

        self.input_size_patches = input_size_patches
        self.total_mask_patches = total_mask_patches
        self.mask_group_max_patches = mask_group_max_patches
        self.mask_group_min_patches = mask_group_min_patches
        self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio
        self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio

        self.codebook_do_resize = codebook_do_resize
        self.codebook_size = codebook_size
100
        self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        self.codebook_do_center_crop = codebook_do_center_crop
        self.codebook_crop_size = codebook_crop_size
        self.codebook_do_map_pixels = codebook_do_map_pixels
        self.codebook_do_normalize = codebook_do_normalize
        self.codebook_image_mean = codebook_image_mean
        self.codebook_image_std = codebook_image_std

    def prepare_feat_extract_dict(self):
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
            "resample": self.resample,
            "do_center_crop": self.do_center_crop,
            "crop_size": self.crop_size,
            "input_size_patches": self.input_size_patches,
            "total_mask_patches": self.total_mask_patches,
            "mask_group_max_patches": self.mask_group_max_patches,
            "mask_group_min_patches": self.mask_group_min_patches,
            "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio,
            "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio,
            "codebook_do_resize": self.codebook_do_resize,
            "codebook_size": self.codebook_size,
            "codebook_resample": self.codebook_resample,
            "codebook_do_center_crop": self.codebook_do_center_crop,
            "codebook_crop_size": self.codebook_crop_size,
            "codebook_do_map_pixels": self.codebook_do_map_pixels,
            "codebook_do_normalize": self.codebook_do_normalize,
            "codebook_image_mean": self.codebook_image_mean,
            "codebook_image_std": self.codebook_image_std,
        }

    def get_expected_image_size(self):
        return (self.size, self.size) if not isinstance(self.size, tuple) else self.size

    def get_expected_mask_size(self):
        return (
            (self.input_size_patches, self.input_size_patches)
            if not isinstance(self.input_size_patches, tuple)
            else self.input_size_patches
        )

    def get_expected_codebook_image_size(self):
        if not isinstance(self.codebook_size, tuple):
            return (self.codebook_size, self.codebook_size)
        else:
            return self.codebook_size


@require_torch
@require_vision
class FlavaFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):

    feature_extraction_class = FlavaFeatureExtractor if is_vision_available() else None
    maxDiff = None

    def setUp(self):
        self.feature_extract_tester = FlavaFeatureExtractionTester(self)

    @property
    def feat_extract_dict(self):
        return self.feature_extract_tester.prepare_feat_extract_dict()

    def test_feat_extract_properties(self):
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        self.assertTrue(hasattr(feature_extractor, "image_mean"))
        self.assertTrue(hasattr(feature_extractor, "image_std"))
        self.assertTrue(hasattr(feature_extractor, "do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "do_resize"))
        self.assertTrue(hasattr(feature_extractor, "resample"))
        self.assertTrue(hasattr(feature_extractor, "crop_size"))
        self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
        self.assertTrue(hasattr(feature_extractor, "masking_generator"))
        self.assertTrue(hasattr(feature_extractor, "codebook_do_resize"))
        self.assertTrue(hasattr(feature_extractor, "codebook_size"))
        self.assertTrue(hasattr(feature_extractor, "codebook_resample"))
        self.assertTrue(hasattr(feature_extractor, "codebook_do_center_crop"))
        self.assertTrue(hasattr(feature_extractor, "codebook_crop_size"))
        self.assertTrue(hasattr(feature_extractor, "codebook_do_map_pixels"))
        self.assertTrue(hasattr(feature_extractor, "codebook_do_normalize"))
        self.assertTrue(hasattr(feature_extractor, "codebook_image_mean"))
        self.assertTrue(hasattr(feature_extractor, "codebook_image_std"))

    def test_batch_feature(self):
        pass

    def test_call_pil(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt")

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

        expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()

        self.assertEqual(
            encoded_images.pixel_values.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt")
        expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()

        # Test no bool masked pos
        self.assertFalse("bool_masked_pos" in encoded_images)

        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

    def _test_call_framework(self, instance_class, prepare_kwargs):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random tensors
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, **prepare_kwargs)
        for image in image_inputs:
            self.assertIsInstance(image, instance_class)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_tensors="pt")

        expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        encoded_images = feature_extractor(image_inputs, return_image_mask=True, return_tensors="pt")

        expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

        expected_height, expected_width = self.feature_extract_tester.get_expected_mask_size()
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
                self.feature_extract_tester.batch_size,
                expected_height,
                expected_width,
            ),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values

        expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
        self.assertEqual(
            encoded_images.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

        # Test masking
        encoded_images = feature_extractor(image_inputs, return_image_mask=True, return_tensors="pt")

        expected_height, expected_width = self.feature_extract_tester.get_expected_image_size()
        self.assertEqual(
            encoded_images.pixel_values.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )

        expected_height, expected_width = self.feature_extract_tester.get_expected_mask_size()
        self.assertEqual(
            encoded_images.bool_masked_pos.shape,
            (
                self.feature_extract_tester.batch_size,
                expected_height,
                expected_width,
            ),
        )

    def test_call_numpy(self):
        self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True})

    def test_call_pytorch(self):
        self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True})

    def test_masking(self):
        # Initialize feature_extractor
        random.seed(1234)
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_image_mask=True, return_tensors="pt")
        self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75)

    def test_codebook_pixels(self):
        # Initialize feature_extractor
        feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
        # create random PIL images
        image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = feature_extractor(image_inputs[0], return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.feature_extract_tester.get_expected_codebook_image_size()
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
            (1, self.feature_extract_tester.num_channels, expected_height, expected_width),
        )

        # Test batched
        encoded_images = feature_extractor(image_inputs, return_codebook_pixels=True, return_tensors="pt")
        expected_height, expected_width = self.feature_extract_tester.get_expected_codebook_image_size()
        self.assertEqual(
            encoded_images.codebook_pixel_values.shape,
            (
                self.feature_extract_tester.batch_size,
                self.feature_extract_tester.num_channels,
                expected_height,
                expected_width,
            ),
        )