wav2vec2.rst 5.71 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
.. 
    Copyright 2021 The HuggingFace Team. All rights reserved.

    Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
    the License. You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
    an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
    specific language governing permissions and limitations under the License.

Wav2Vec2
-----------------------------------------------------------------------------------------------------------------------

Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Wav2Vec2 model was proposed in `wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
<https://arxiv.org/abs/2006.11477>`__ by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.

The abstract from the paper is the following:

*We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on
transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks
the speech input in the latent space and solves a contrastive task defined over a quantization of the latent
representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the
clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state
of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and
pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech
recognition with limited amounts of labeled data.*

Tips:

- Wav2Vec2 is a speech model that accepts a float array corresponding to the raw waveform of the speech signal.
- Wav2Vec2 model was trained using connectionist temporal classification (CTC) so the model output has to be decoded
37
  using :class:`~transformers.Wav2Vec2CTCTokenizer`.
Patrick von Platen's avatar
Patrick von Platen committed
38

39
40
This model was contributed by `patrickvonplaten <https://huggingface.co/patrickvonplaten>`__.

Patrick von Platen's avatar
Patrick von Platen committed
41
42
43
44
45
46
47
48

Wav2Vec2Config
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Wav2Vec2Config
    :members:


49
Wav2Vec2CTCTokenizer
Patrick von Platen's avatar
Patrick von Platen committed
50
51
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

52
.. autoclass:: transformers.Wav2Vec2CTCTokenizer
Patrick von Platen's avatar
Patrick von Platen committed
53
54
55
    :members: __call__, save_vocabulary


56
57
58
59
60
61
62
63
64
65
66
Wav2Vec2FeatureExtractor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Wav2Vec2FeatureExtractor
    :members: __call__


Wav2Vec2Processor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Wav2Vec2Processor
67
    :members: __call__, pad, from_pretrained, save_pretrained, batch_decode, decode, as_target_processor
68
69


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
Wav2Vec2 specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2BaseModelOutput
    :members: 

.. autoclass:: transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForPreTrainingOutput
    :members: 

.. autoclass:: transformers.models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2BaseModelOutput
    :members: 

.. autoclass:: transformers.models.wav2vec2.modeling_flax_wav2vec2.FlaxWav2Vec2ForPreTrainingOutput
    :members: 


Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
89
90
91
92
Wav2Vec2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Wav2Vec2Model
    :members: forward


93
Wav2Vec2ForCTC
Patrick von Platen's avatar
Patrick von Platen committed
94
95
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

96
.. autoclass:: transformers.Wav2Vec2ForCTC
Patrick von Platen's avatar
Patrick von Platen committed
97
    :members: forward
Anton Lozhkov's avatar
Anton Lozhkov committed
98

99
100
101
102
103
104
105
106

Wav2Vec2ForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Wav2Vec2ForSequenceClassification
    :members: forward


Anton Lozhkov's avatar
Anton Lozhkov committed
107
108
109
110
111
Wav2Vec2ForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.Wav2Vec2ForPreTraining
    :members: forward
Will Rice's avatar
Will Rice committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125


TFWav2Vec2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFWav2Vec2Model
    :members: call


TFWav2Vec2ForCTC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.TFWav2Vec2ForCTC
    :members: call
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145


FlaxWav2Vec2Model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.FlaxWav2Vec2Model
    :members: __call__


FlaxWav2Vec2ForCTC
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.FlaxWav2Vec2ForCTC
    :members: __call__

FlaxWav2Vec2ForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: transformers.FlaxWav2Vec2ForPreTraining
    :members: __call__