run_swag.py 23.4 KB
Newer Older
Grégory Châtel's avatar
Grégory Châtel committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
Grégory Châtel's avatar
Grégory Châtel committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

thomwolf's avatar
thomwolf committed
18
19
import argparse
import csv
20
import logging
21
22
import os
import random
thomwolf's avatar
thomwolf committed
23
24
import sys
from io import open
25
26
27

import numpy as np
import torch
thomwolf's avatar
thomwolf committed
28
29
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
30
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
31
from tqdm import tqdm, trange
32

thomwolf's avatar
thomwolf committed
33
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
34
from pytorch_pretrained_bert.modeling import BertForMultipleChoice
35
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
thomwolf's avatar
thomwolf committed
36
from pytorch_pretrained_bert.tokenization import BertTokenizer
37
38
39
40
41
42

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)

43

Grégory Châtel's avatar
Grégory Châtel committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class SwagExample(object):
    """A single training/test example for the SWAG dataset."""
    def __init__(self,
                 swag_id,
                 context_sentence,
                 start_ending,
                 ending_0,
                 ending_1,
                 ending_2,
                 ending_3,
                 label = None):
        self.swag_id = swag_id
        self.context_sentence = context_sentence
        self.start_ending = start_ending
58
59
60
61
62
63
        self.endings = [
            ending_0,
            ending_1,
            ending_2,
            ending_3,
        ]
Grégory Châtel's avatar
Grégory Châtel committed
64
65
66
67
68
69
70
        self.label = label

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        l = [
thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
77
            "swag_id: {}".format(self.swag_id),
            "context_sentence: {}".format(self.context_sentence),
            "start_ending: {}".format(self.start_ending),
            "ending_0: {}".format(self.endings[0]),
            "ending_1: {}".format(self.endings[1]),
            "ending_2: {}".format(self.endings[2]),
            "ending_3: {}".format(self.endings[3]),
Grégory Châtel's avatar
Grégory Châtel committed
78
79
80
        ]

        if self.label is not None:
thomwolf's avatar
thomwolf committed
81
            l.append("label: {}".format(self.label))
82
83
84
85
86
87
88

        return ", ".join(l)


class InputFeatures(object):
    def __init__(self,
                 example_id,
89
90
                 choices_features,
                 label
91

92
93
    ):
        self.example_id = example_id
94
95
96
97
98
99
100
101
        self.choices_features = [
            {
                'input_ids': input_ids,
                'input_mask': input_mask,
                'segment_ids': segment_ids
            }
            for _, input_ids, input_mask, segment_ids in choices_features
        ]
102
        self.label = label
Grégory Châtel's avatar
Grégory Châtel committed
103

104

105
def read_swag_examples(input_file, is_training):
106
    with open(input_file, 'r', encoding='utf-8') as f:
107
        reader = csv.reader(f)
thomwolf's avatar
thomwolf committed
108
109
110
111
112
        lines = []
        for line in reader:
            if sys.version_info[0] == 2:
                line = list(unicode(cell, 'utf-8') for cell in line)
            lines.append(line)
113

114
    if is_training and lines[0][-1] != 'label':
115
        raise ValueError(
116
117
            "For training, the input file must contain a label column."
        )
Grégory Châtel's avatar
Grégory Châtel committed
118

119
120
    examples = [
        SwagExample(
121
122
123
            swag_id = line[2],
            context_sentence = line[4],
            start_ending = line[5], # in the swag dataset, the
124
125
                                         # common beginning of each
                                         # choice is stored in "sent2".
126
127
128
129
130
131
            ending_0 = line[7],
            ending_1 = line[8],
            ending_2 = line[9],
            ending_3 = line[10],
            label = int(line[11]) if is_training else None
        ) for line in lines[1:] # we skip the line with the column names
132
133
134
135
    ]

    return examples

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 is_training):
    """Loads a data file into a list of `InputBatch`s."""

    # Swag is a multiple choice task. To perform this task using Bert,
    # we will use the formatting proposed in "Improving Language
    # Understanding by Generative Pre-Training" and suggested by
    # @jacobdevlin-google in this issue
    # https://github.com/google-research/bert/issues/38.
    #
    # Each choice will correspond to a sample on which we run the
    # inference. For a given Swag example, we will create the 4
    # following inputs:
    # - [CLS] context [SEP] choice_1 [SEP]
    # - [CLS] context [SEP] choice_2 [SEP]
    # - [CLS] context [SEP] choice_3 [SEP]
    # - [CLS] context [SEP] choice_4 [SEP]
    # The model will output a single value for each input. To get the
    # final decision of the model, we will run a softmax over these 4
    # outputs.
    features = []
    for example_index, example in enumerate(examples):
        context_tokens = tokenizer.tokenize(example.context_sentence)
        start_ending_tokens = tokenizer.tokenize(example.start_ending)

        choices_features = []
        for ending_index, ending in enumerate(example.endings):
            # We create a copy of the context tokens in order to be
            # able to shrink it according to ending_tokens
            context_tokens_choice = context_tokens[:]
            ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
            # Modifies `context_tokens_choice` and `ending_tokens` in
            # place so that the total length is less than the
            # specified length.  Account for [CLS], [SEP], [SEP] with
            # "- 3"
171
            _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

            tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
            segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding = [0] * (max_seq_length - len(input_ids))
            input_ids += padding
            input_mask += padding
            segment_ids += padding

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            choices_features.append((tokens, input_ids, input_mask, segment_ids))

        label = example.label
        if example_index < 5:
            logger.info("*** Example ***")
thomwolf's avatar
thomwolf committed
194
            logger.info("swag_id: {}".format(example.swag_id))
195
            for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
thomwolf's avatar
thomwolf committed
196
197
198
199
200
                logger.info("choice: {}".format(choice_idx))
                logger.info("tokens: {}".format(' '.join(tokens)))
                logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
                logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
                logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
201
            if is_training:
thomwolf's avatar
thomwolf committed
202
                logger.info("label: {}".format(label))
203

204
205
206
207
208
209
210
        features.append(
            InputFeatures(
                example_id = example.swag_id,
                choices_features = choices_features,
                label = label
            )
        )
211

212
    return features
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

def select_field(features, field):
    return [
        [
            choice[field]
            for choice in feature.choices_features
        ]
        for feature in features
    ]

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .csv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
254
255
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
thomwolf's avatar
thomwolf committed
318
319
320
321
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
322
323
324
325
326
327
328

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
thomwolf's avatar
thomwolf committed
329
        torch.cuda.set_device(args.local_rank)
330
331
332
333
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
334
335
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
336
337
338
339
340

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

341
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
342
343
344
345
346
347
348
349
350
351
352
353

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
354
355
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
356
357
358
359

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
360
    num_train_optimization_steps = None
361
362
    if args.do_train:
        train_examples = read_swag_examples(os.path.join(args.data_dir, 'train.csv'), is_training = True)
363
364
365
366
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
367
368
369

    # Prepare model
    model = BertForMultipleChoice.from_pretrained(args.bert_model,
thomwolf's avatar
thomwolf committed
370
        cache_dir=os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank)),
371
        num_choices=4)
372
373
374
375
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
376
377
378
379
380
381
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
382
383
384
385
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
thomwolf's avatar
thomwolf committed
386
387
388
389
390
391
392
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
393
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
394
395
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
396
        ]
thomwolf's avatar
thomwolf committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
416
                             t_total=num_train_optimization_steps)
417
418
419
420
421
422
423
424

    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, tokenizer, args.max_seq_length, True)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
425
        logger.info("  Num steps = %d", num_train_optimization_steps)
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
        all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
        all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss = model(input_ids, segment_ids, input_mask, label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
453
454
455
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
456
457
458
459
460

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
461
                if (step + 1) % args.gradient_accumulation_steps == 0:
462
463
464
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
465
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
466
467
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
thomwolf's avatar
thomwolf committed
468
469
                    optimizer.step()
                    optimizer.zero_grad()
470
471
                    global_step += 1

472

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    if args.do_train:
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        torch.save(model_to_save.state_dict(), output_model_file)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForMultipleChoice(config, num_choices=4)
        model.load_state_dict(torch.load(output_model_file))
    else:
        model = BertForMultipleChoice.from_pretrained(args.bert_model, num_choices=4)
488
489
    model.to(device)

490

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = read_swag_examples(os.path.join(args.data_dir, 'val.csv'), is_training = True)
        eval_features = convert_examples_to_features(
            eval_examples, tokenizer, args.max_seq_length, True)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
        all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
        all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
        all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss, eval_accuracy = 0, 0
        nb_eval_steps, nb_eval_examples = 0, 0
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
            tmp_eval_accuracy = accuracy(logits, label_ids)

            eval_loss += tmp_eval_loss.mean().item()
            eval_accuracy += tmp_eval_accuracy

            nb_eval_examples += input_ids.size(0)
            nb_eval_steps += 1

        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples

        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
                  'loss': tr_loss/nb_tr_steps}

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

545

546
if __name__ == "__main__":
547
    main()