utils.py 7.72 KB
Newer Older
1
2
import itertools
import json
3
import os
4
5
6
import pickle
from pathlib import Path
from typing import Dict, Iterable, List
7

8
9
import git
import numpy as np
10
import torch
11
12
13
14
from rouge_score import rouge_scorer, scoring
from torch import nn
from torch.utils.data import Dataset, Sampler
from tqdm import tqdm
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

def encode_file(
    tokenizer,
    data_path,
    max_length,
    pad_to_max_length=True,
    return_tensors="pt",
    overwrite_cache=False,
    prefix="",
    tok_name="",
):
    cache_path = Path(f"{data_path}_{tok_name}{max_length}.pt")
    if not overwrite_cache and cache_path.exists():
        try:
            examples = torch.load(cache_path)
            assert isinstance(examples, list)
            return examples

        except Exception:
            print(f"failed to load from {cache_path}, retokenizing {data_path}")
    data_path = Path(data_path)

    lns = lmap(str.strip, data_path.open().readlines())
    lns = [prefix + text for text in lns]
    assert lns, f"found empty file at {data_path}"
41
    examples = []
42
43
44
45
46
47
48
49
50
51
    for text in tqdm(lns, desc=f"Tokenizing {data_path.name}"):
        tokenized = tokenizer.batch_encode_plus(
            [text],  # DONT ADD SPACES
            max_length=max_length,
            pad_to_max_length=pad_to_max_length,
            add_prefix_space=True,
            return_tensors=return_tensors,
        )
        examples.append(tokenized)
    torch.save(lmap(dict, examples), cache_path.open("wb"))
52
    return examples
53
54


55
56
57
58
59
60
61
def lmap(f, x):
    return list(map(f, x))


T5_PREFIX = "summarize: "  # HACK, fixme


62
63
64
65
66
67
68
69
70
71
72
def trim_batch(
    input_ids, pad_token_id, attention_mask=None,
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


73
74
75
76
class SummarizationDataset(Dataset):
    def __init__(
        self,
        tokenizer,
77
        data_dir,
78
79
80
        type_path="train",
        max_source_length=1024,
        max_target_length=56,
81
82
83
        n_obs=None,
        overwrite_cache=False,
        prefix="",
84
85
    ):
        super().__init__()
86
        tok_name = tokenizer.__class__.__name__.lower().rstrip("tokenizer")
87
88
89
90
91
92
93
94
        self.source = encode_file(
            tokenizer,
            os.path.join(data_dir, type_path + ".source"),
            max_source_length,
            overwrite_cache=overwrite_cache,
            prefix=prefix,
            tok_name=tok_name,
        )
95
        tgt_path = os.path.join(data_dir, type_path + ".target")
96
97
98
99
100
101
102
        self.target = encode_file(
            tokenizer, tgt_path, max_target_length, overwrite_cache=overwrite_cache, tok_name=tok_name
        )
        if n_obs is not None:
            self.source = self.source[:n_obs]
            self.target = self.target[:n_obs]
        self.pad_token_id = tokenizer.pad_token_id
103
104
105
106
107
108
109

    def __len__(self):
        return len(self.source)

    def __getitem__(self, index):
        source_ids = self.source[index]["input_ids"].squeeze()
        target_ids = self.target[index]["input_ids"].squeeze()
110
        src_mask = self.source[index]["attention_mask"].squeeze()
111
        return {"input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids}
112
113
114

    @staticmethod
    def trim_seq2seq_batch(batch, pad_token_id):
115
116
        y = trim_batch(batch["decoder_input_ids"], pad_token_id)
        source_ids, source_mask = trim_batch(batch["input_ids"], pad_token_id, attention_mask=batch["attention_mask"])
117
118
        return source_ids, source_mask, y

119
120
121
122
123
    def collate_fn(self, batch) -> dict:
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
        target_ids = torch.stack([x["decoder_input_ids"] for x in batch])
        pad_token_id = self.pad_token_id
124
125
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        batch = {"input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y}
        return batch

    @property
    def src_lens(self):  # Can delete?
        return lmap(len, self.source)

    @property
    def tgt_lens(self):
        return lmap(len, self.target)

    def make_sortish_sampler(self, batch_size):
        return SortishSampler(self.source, batch_size)


class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

    def __init__(self, data, batch_size):
        self.data, self.bs = data, batch_size

    def key(self, i):
        return len(self.data[i])

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
        idxs = np.random.permutation(len(self.data))
        sz = self.bs * 50
        ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
        sort_idx = np.concatenate([sorted(s, key=self.key, reverse=True) for s in ck_idx])
        sz = self.bs
        ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
        max_ck = np.argmax([self.key(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
        ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
        sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int)
        sort_idx = np.concatenate((ck_idx[0], sort_idx))
        return iter(sort_idx)


def use_task_specific_params(model, task):
    # update config with summarization specific params
    task_specific_params = model.config.task_specific_params
    if task_specific_params is not None:
        model.config.update(task_specific_params.get(task, {}))


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return [x for x in itertools.chain.from_iterable(summary_ids)]


def save_git_info(folder_path: str):
    """
    Log commit info.
    """
    repo_infos = get_git_info()

    with open(os.path.join(folder_path, "git_log.json"), "w") as f:
        json.dump(repo_infos, f, indent=4)


def get_git_info():
    repo = git.Repo(search_parent_directories=True)
    repo_infos = {
        "repo_id": str(repo),
        "repo_sha": str(repo.head.object.hexsha),
        "repo_branch": str(repo.active_branch),
    }
    return repo_infos


ROUGE_KEYS = ["rouge1", "rouge2", "rougeL"]


def calculate_rouge(output_lns: List[str], reference_lns: List[str]) -> Dict:
    scorer = rouge_scorer.RougeScorer(ROUGE_KEYS, use_stemmer=True)
    aggregator = scoring.BootstrapAggregator()

    for reference_ln, output_ln in zip(reference_lns, output_lns):
        scores = scorer.score(reference_ln, output_ln)
        aggregator.add_scores(scores)

    result = aggregator.aggregate()
    return {k: v.mid.fmeasure for k, v in result.items()}


def freeze_params(model: nn.Module):
    for par in model.parameters():
        par.requires_grad = False


def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"