test_modeling_tf_auto.py 12.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import copy
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import unittest
thomwolf's avatar
thomwolf committed
19

20
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPT2Config, T5Config, is_tf_available
21
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, require_tf, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
22

23
24
from .test_modeling_bert import BertModelTester

25

26
if is_tf_available():
27
28
    from transformers import (
        TFAutoModel,
29
30
        TFAutoModelForCausalLM,
        TFAutoModelForMaskedLM,
thomwolf's avatar
thomwolf committed
31
        TFAutoModelForPreTraining,
32
33
34
        TFAutoModelForQuestionAnswering,
        TFAutoModelForSeq2SeqLM,
        TFAutoModelForSequenceClassification,
35
        TFAutoModelForTokenClassification,
36
37
        TFAutoModelWithLMHead,
        TFBertForMaskedLM,
38
        TFBertForPreTraining,
39
        TFBertForQuestionAnswering,
40
41
        TFBertForSequenceClassification,
        TFBertModel,
42
43
        TFFunnelBaseModel,
        TFFunnelModel,
44
        TFGPT2LMHeadModel,
45
        TFRobertaForMaskedLM,
46
47
        TFT5ForConditionalGeneration,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
48
    from transformers.models.auto.modeling_tf_auto import (
49
50
        TF_MODEL_FOR_CAUSAL_LM_MAPPING,
        TF_MODEL_FOR_MASKED_LM_MAPPING,
51
52
        TF_MODEL_FOR_PRETRAINING_MAPPING,
        TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
53
        TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
54
55
        TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
56
        TF_MODEL_MAPPING,
57
        TF_MODEL_WITH_LM_HEAD_MAPPING,
58
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
59
60
61
    from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_tf_gpt2 import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_tf_t5 import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
62
63


64
65
66
67
68
69
70
71
72
73
class NewModelConfig(BertConfig):
    model_type = "new-model"


if is_tf_available():

    class TFNewModel(TFBertModel):
        config_class = NewModelConfig


74
@require_tf
thomwolf's avatar
thomwolf committed
75
class TFAutoModelTest(unittest.TestCase):
76
    @slow
thomwolf's avatar
thomwolf committed
77
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
78
        import h5py
79

thomwolf's avatar
thomwolf committed
80
81
        self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))

82
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
83
        for model_name in ["bert-base-uncased"]:
84
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
85
86
87
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

88
            model = TFAutoModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
89
90
91
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertModel)

thomwolf's avatar
thomwolf committed
92
93
94
95
96
97
    @slow
    def test_model_for_pretraining_from_pretrained(self):
        import h5py

        self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))

98
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
99
100
101
102
103
104
105
106
107
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForPreTraining.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForPreTraining)

108
109
110
111
112
113
114
115
116
117
118
119
    @slow
    def test_model_for_causal_lm(self):
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = TFAutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFGPT2LMHeadModel)

120
    @slow
thomwolf's avatar
thomwolf committed
121
    def test_lmhead_model_from_pretrained(self):
122
        for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
123
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
124
125
126
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

127
            model = TFAutoModelWithLMHead.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
128
129
130
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForMaskedLM)

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    @slow
    def test_model_for_masked_lm(self):
        for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = TFAutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFT5ForConditionalGeneration)

155
    @slow
thomwolf's avatar
thomwolf committed
156
    def test_sequence_classification_model_from_pretrained(self):
157
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
158
        for model_name in ["bert-base-uncased"]:
159
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
160
161
162
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

163
            model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
164
165
166
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForSequenceClassification)

167
    @slow
thomwolf's avatar
thomwolf committed
168
    def test_question_answering_model_from_pretrained(self):
169
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
170
        for model_name in ["bert-base-uncased"]:
171
            config = AutoConfig.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
172
173
174
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

175
            model = TFAutoModelForQuestionAnswering.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
176
177
178
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForQuestionAnswering)

Julien Chaumond's avatar
Julien Chaumond committed
179
    def test_from_pretrained_identifier(self):
180
        model = TFAutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
181
        self.assertIsInstance(model, TFBertForMaskedLM)
Julien Plu's avatar
Julien Plu committed
182
183
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
184
185

    def test_from_identifier_from_model_type(self):
186
        model = TFAutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
187
        self.assertIsInstance(model, TFRobertaForMaskedLM)
Julien Plu's avatar
Julien Plu committed
188
189
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, TFFunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = TFAutoModel.from_config(config)
        self.assertIsInstance(model, TFFunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = TFAutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, TFFunnelBaseModel)

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    def test_parents_and_children_in_mappings(self):
        # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
        # by the parents and will return the wrong configuration type when using auto models
        mappings = (
            TF_MODEL_MAPPING,
            TF_MODEL_FOR_PRETRAINING_MAPPING,
            TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
            TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            TF_MODEL_WITH_LM_HEAD_MAPPING,
            TF_MODEL_FOR_CAUSAL_LM_MAPPING,
            TF_MODEL_FOR_MASKED_LM_MAPPING,
            TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        )

        for mapping in mappings:
            mapping = tuple(mapping.items())
            for index, (child_config, child_model) in enumerate(mapping[1:]):
                for parent_config, parent_model in mapping[: index + 1]:
225
                    with self.subTest(msg=f"Testing if {child_config.__name__} is child of {parent_config.__name__}"):
226
                        self.assertFalse(issubclass(child_config, parent_config))
227
228
229
230
231
232
233
234
235

                    # Tuplify child_model and parent_model since some of them could be tuples.
                    if not isinstance(child_model, (list, tuple)):
                        child_model = (child_model,)
                    if not isinstance(parent_model, (list, tuple)):
                        parent_model = (parent_model,)

                    for child, parent in [(a, b) for a in child_model for b in parent_model]:
                        assert not issubclass(child, parent), f"{child.__name__} is child of {parent.__name__}"
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

    def test_new_model_registration(self):
        try:
            AutoConfig.register("new-model", NewModelConfig)

            auto_classes = [
                TFAutoModel,
                TFAutoModelForCausalLM,
                TFAutoModelForMaskedLM,
                TFAutoModelForPreTraining,
                TFAutoModelForQuestionAnswering,
                TFAutoModelForSequenceClassification,
                TFAutoModelForTokenClassification,
            ]

            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, TFNewModel)
                    auto_class.register(NewModelConfig, TFNewModel)
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, TFBertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
                    config = NewModelConfig(**tiny_config.to_dict())
                    model = auto_class.from_config(config)
                    self.assertIsInstance(model, TFNewModel)

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
                        self.assertIsInstance(new_model, TFNewModel)

        finally:
            if "new-model" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["new-model"]
            for mapping in (
                TF_MODEL_MAPPING,
                TF_MODEL_FOR_PRETRAINING_MAPPING,
                TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                TF_MODEL_FOR_CAUSAL_LM_MAPPING,
                TF_MODEL_FOR_MASKED_LM_MAPPING,
            ):
                if NewModelConfig in mapping._extra_content:
                    del mapping._extra_content[NewModelConfig]