test_modeling_tf_gptj.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import AutoTokenizer, GPTJConfig, is_tf_available
from transformers.testing_utils import require_tf, slow, tooslow

Yih-Dar's avatar
Yih-Dar committed
21
22
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
23
from ...test_pipeline_mixin import PipelineTesterMixin
Yih-Dar's avatar
Yih-Dar committed
24
from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


if is_tf_available():
    import tensorflow as tf

    from transformers.models.gptj.modeling_tf_gptj import (
        TFGPTJForCausalLM,
        TFGPTJForQuestionAnswering,
        TFGPTJForSequenceClassification,
        TFGPTJModel,
        shape_list,
    )


class TFGPTJModelTester:
    def __init__(self, parent):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
51
        self.rotary_dim = 4
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.bos_token_id = self.vocab_size - 1
        self.eos_token_id = self.vocab_size - 1
        self.pad_token_id = self.vocab_size - 1

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
74
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPTJConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
107
            rotary_dim=self.rotary_dim,
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            return_dict=True,
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_gptj_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPTJModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
        result = model(inputs)

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
        result = model(inputs)

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_gptj_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPTJModel(config=config)

        # first forward pass
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

152
        output, past_key_values = outputs.to_tuple()
153
154
155
156
157
158
159
160
161
162

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)

        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
163
164
165
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past_key_values)[
            "last_hidden_state"
        ]
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_gptj_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPTJModel(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
187
        output, past_key_values = model(input_ids, attention_mask=attn_mask).to_tuple()
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)

        # get two different outputs
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
207
208
209
        output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
            "last_hidden_state"
        ]
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)

    def create_and_check_gptj_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPTJModel(config=config)

        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        token_type_ids = token_type_ids[:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True)

232
        output, past_key_values = outputs.to_tuple()
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
        next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
248
249
250
251
            next_tokens,
            token_type_ids=next_token_types,
            attention_mask=next_attention_mask,
            past_key_values=past_key_values,
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        )["last_hidden_state"]
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)

    def create_and_check_gptj_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPTJForCausalLM(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
        return config, inputs_dict


@require_tf
297
class TFGPTJModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
298
299
300
301
302
303
304
    all_model_classes = (
        (TFGPTJForCausalLM, TFGPTJForSequenceClassification, TFGPTJForQuestionAnswering, TFGPTJModel)
        if is_tf_available()
        else ()
    )

    all_generative_model_classes = (TFGPTJForCausalLM,) if is_tf_available() else ()
305
306
307
308
309
310
311
312
313
314
315
    pipeline_model_mapping = (
        {
            "feature-extraction": TFGPTJModel,
            "question-answering": TFGPTJForQuestionAnswering,
            "text-classification": TFGPTJForSequenceClassification,
            "text-generation": TFGPTJForCausalLM,
            "zero-shot": TFGPTJForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    test_onnx = False
    test_pruning = False
    test_missing_keys = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = TFGPTJModelTester(self)
        self.config_tester = ConfigTester(self, config_class=GPTJConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gptj_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model(*config_and_inputs)

    def test_gptj_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_past(*config_and_inputs)

    def test_gptj_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_attention_mask_past(*config_and_inputs)

    def test_gptj_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_model_past_large_inputs(*config_and_inputs)

    def test_gptj_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gptj_lm_head_model(*config_and_inputs)

    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None

    @slow
367
368
369
370
    @unittest.skipIf(
        not is_tf_available() or len(tf.config.list_physical_devices("GPU")) > 0,
        "skip testing on GPU for now to avoid GPU OOM.",
    )
371
372
373
374
375
376
377
378
379
380
    def test_model_from_pretrained(self):
        model = TFGPTJModel.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True)
        self.assertIsNotNone(model)

    @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor.")
    def test_resize_token_embeddings(self):
        super().test_resize_token_embeddings()


@require_tf
381
382
@tooslow
# Marked as @tooslow due to GPU OOM -- but still useful to run locally. Requires ~39GB of RAM.
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
class TFGPTJModelLanguageGenerationTest(unittest.TestCase):
    def test_lm_generate_gptj(self):
        model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", from_pt=True)
        input_ids = tf.convert_to_tensor([[464, 3290]], dtype=tf.int32)  # The dog
        # fmt: off
        # The dog is a man's best friend. It is a loyal companion, and it is a friend
        expected_output_ids = [464, 3290, 318, 257, 582, 338, 1266, 1545, 13, 632, 318, 257, 9112, 15185, 11, 290, 340, 318, 257, 1545]
        # fmt: on
        output_ids = model.generate(input_ids, do_sample=False)
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)

    def test_gptj_sample(self):
        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")
        model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True)

398
399
400
401
        tokenized = tokenizer("Today is a nice day and", return_tensors="tf")
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
            output_ids = model.generate(**tokenized, do_sample=True, seed=[42, 0])
402
403
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

404
        EXPECTED_OUTPUT_STR = "Today is a nice day and I’m going to go for a walk. I’"
405
406
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)

407
    def _get_beam_search_test_objects(self):
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        model = TFGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", revision="float16", from_pt=True)
        tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B", revision="float16")

        tokenizer.padding_side = "left"

        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]
422
423
424
425
426
        expected_output_sentences = [
            "Hello, my dog is a little over a year old and has been diagnosed with hip dysplasia",
            "Today, I’m going to be talking about a topic that’",
        ]
        return model, tokenizer, sentences, expected_output_sentences
427

428
429
430
    def test_batch_beam_search(self):
        # Confirms that we get the expected results with left-padded beam search
        model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects()
431

432
433
434
435
        inputs = tokenizer(sentences, return_tensors="tf", padding=True)
        outputs = model.generate(**inputs, do_sample=False, num_beams=2)
        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        self.assertListEqual(expected_output_sentences, batch_out_sentence)
436

437
438
439
    def test_batch_left_padding(self):
        # Confirms that left-padding is working properly
        model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects()
440

441
442
443
        inputs = tokenizer(sentences, return_tensors="tf", padding=True)
        inputs_non_padded = tokenizer(sentences[0], return_tensors="tf")
        output_non_padded = model.generate(**inputs_non_padded, do_sample=False, num_beams=2)
444
        num_paddings = (
445
446
447
448
449
450
            shape_list(inputs_non_padded["input_ids"])[-1]
            - tf.reduce_sum(tf.cast(inputs["attention_mask"][-1], tf.int64)).numpy()
        )
        inputs_padded = tokenizer(sentences[1], return_tensors="tf")
        output_padded = model.generate(
            **inputs_padded, do_sample=False, num_beams=2, max_length=model.config.max_length - num_paddings
451
452
453
        )
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)
454
        self.assertListEqual(expected_output_sentences, [non_padded_sentence, padded_sentence])
455

456
457
458
459
460
461
462
463
464
    def test_xla_beam_search(self):
        # Confirms that XLA is working properly
        model, tokenizer, sentences, expected_output_sentences = self._get_beam_search_test_objects()

        inputs = tokenizer(sentences, return_tensors="tf", padding=True)
        xla_generate = tf.function(model.generate, jit_compile=True)
        outputs_xla = xla_generate(**inputs, do_sample=False, num_beams=2)
        xla_sentence = tokenizer.batch_decode(outputs_xla, skip_special_tokens=True)
        self.assertListEqual(expected_output_sentences, xla_sentence)