test_processor_whisper.py 7.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import shutil
import tempfile
import unittest

19
20
import pytest

21
22
23
24
25
26
27
28
29
30
from transformers import WhisperTokenizer, is_speech_available
from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio

from .test_feature_extraction_whisper import floats_list


if is_speech_available():
    from transformers import WhisperFeatureExtractor, WhisperProcessor


31
32
33
34
TRANSCRIBE = 50358
NOTIMESTAMPS = 50362


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
@require_torch
@require_torchaudio
@require_sentencepiece
class WhisperProcessorTest(unittest.TestCase):
    def setUp(self):
        self.checkpoint = "openai/whisper-small.en"
        self.tmpdirname = tempfile.mkdtemp()

    def get_tokenizer(self, **kwargs):
        return WhisperTokenizer.from_pretrained(self.checkpoint, **kwargs)

    def get_feature_extractor(self, **kwargs):
        return WhisperFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        processor.save_pretrained(self.tmpdirname)
        processor = WhisperProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer, WhisperTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, WhisperFeatureExtractor)

    def test_save_load_pretrained_additional_features(self):
        processor = WhisperProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)

        processor = WhisperProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, WhisperTokenizer)

        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, WhisperFeatureExtractor)

    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        raw_speech = floats_list((3, 1000))

        input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
        input_processor = processor(raw_speech, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "This is a test string"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)
125
126
127
128
129
130
131
132
133
134
135
136

    def test_model_input_names(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)

        self.assertListEqual(
            processor.model_input_names,
            feature_extractor.model_input_names,
            msg="`processor` and `feature_extractor` model input names do not match",
        )
137
138
139
140
141
142
143
144
145
146
147
148

    def test_get_decoder_prompt_ids(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = WhisperProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
        forced_decoder_ids = processor.get_decoder_prompt_ids(task="transcribe", no_timestamps=True)

        self.assertIsInstance(forced_decoder_ids, list)
        for ids in forced_decoder_ids:
            self.assertIsInstance(ids, (list, tuple))

149
        expected_ids = [TRANSCRIBE, NOTIMESTAMPS]
150
        self.assertListEqual([ids[-1] for ids in forced_decoder_ids], expected_ids)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

    def test_get_prompt_ids(self):
        processor = WhisperProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
        prompt_ids = processor.get_prompt_ids("Mr. Quilter")
        decoded_prompt = processor.tokenizer.decode(prompt_ids)

        self.assertListEqual(prompt_ids.tolist(), [50360, 1770, 13, 2264, 346, 353])
        self.assertEqual(decoded_prompt, "<|startofprev|> Mr. Quilter")

    def test_empty_get_prompt_ids(self):
        processor = WhisperProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
        prompt_ids = processor.get_prompt_ids("")
        decoded_prompt = processor.tokenizer.decode(prompt_ids)

        self.assertListEqual(prompt_ids.tolist(), [50360, 220])
        self.assertEqual(decoded_prompt, "<|startofprev|> ")

    def test_get_prompt_ids_with_special_tokens(self):
        processor = WhisperProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())

        def _test_prompt_error_raised_helper(prompt, special_token):
            with pytest.raises(ValueError) as excinfo:
                processor.get_prompt_ids(prompt)
            expected = f"Encountered text in the prompt corresponding to disallowed special token: {special_token}."
            self.assertEqual(expected, str(excinfo.value))

        _test_prompt_error_raised_helper("<|startofprev|> test", "<|startofprev|>")
        _test_prompt_error_raised_helper("test <|notimestamps|>", "<|notimestamps|>")
        _test_prompt_error_raised_helper("test <|zh|> test <|transcribe|>", "<|zh|>")