"...lm-evaluation-harness.git" did not exist on "76dc60938b43ec471149640e7ed954f3229fbc3e"
test_trainer_callback.py 9.95 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
import shutil
import tempfile
import unittest
18
from unittest.mock import patch
Sylvain Gugger's avatar
Sylvain Gugger committed
19
20
21

from transformers import (
    DefaultFlowCallback,
22
    IntervalStrategy,
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
    PrinterCallback,
    ProgressCallback,
    Trainer,
    TrainerCallback,
    TrainingArguments,
    is_torch_available,
)
from transformers.testing_utils import require_torch


if is_torch_available():
    from transformers.trainer import DEFAULT_CALLBACKS

    from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel


Stas Bekman's avatar
Stas Bekman committed
39
class MyTestTrainerCallback(TrainerCallback):
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    "A callback that registers the events that goes through."

    def __init__(self):
        self.events = []

    def on_init_end(self, args, state, control, **kwargs):
        self.events.append("on_init_end")

    def on_train_begin(self, args, state, control, **kwargs):
        self.events.append("on_train_begin")

    def on_train_end(self, args, state, control, **kwargs):
        self.events.append("on_train_end")

    def on_epoch_begin(self, args, state, control, **kwargs):
        self.events.append("on_epoch_begin")

    def on_epoch_end(self, args, state, control, **kwargs):
        self.events.append("on_epoch_end")

    def on_step_begin(self, args, state, control, **kwargs):
        self.events.append("on_step_begin")

    def on_step_end(self, args, state, control, **kwargs):
        self.events.append("on_step_end")

    def on_evaluate(self, args, state, control, **kwargs):
        self.events.append("on_evaluate")

    def on_save(self, args, state, control, **kwargs):
        self.events.append("on_save")

    def on_log(self, args, state, control, **kwargs):
        self.events.append("on_log")

    def on_prediction_step(self, args, state, control, **kwargs):
        self.events.append("on_prediction_step")


@require_torch
class TrainerCallbackTest(unittest.TestCase):
    def setUp(self):
        self.output_dir = tempfile.mkdtemp()

    def tearDown(self):
        shutil.rmtree(self.output_dir)

    def get_trainer(self, a=0, b=0, train_len=64, eval_len=64, callbacks=None, disable_tqdm=False, **kwargs):
        # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
        # its set to False since the tests later on depend on its value.
        train_dataset = RegressionDataset(length=train_len)
        eval_dataset = RegressionDataset(length=eval_len)
        config = RegressionModelConfig(a=a, b=b)
        model = RegressionPreTrainedModel(config)

95
        args = TrainingArguments(self.output_dir, disable_tqdm=disable_tqdm, report_to=[], **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        return Trainer(
            model,
            args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            callbacks=callbacks,
        )

    def check_callbacks_equality(self, cbs1, cbs2):
        self.assertEqual(len(cbs1), len(cbs2))

        # Order doesn't matter
        cbs1 = list(sorted(cbs1, key=lambda cb: cb.__name__ if isinstance(cb, type) else cb.__class__.__name__))
        cbs2 = list(sorted(cbs2, key=lambda cb: cb.__name__ if isinstance(cb, type) else cb.__class__.__name__))

        for cb1, cb2 in zip(cbs1, cbs2):
            if isinstance(cb1, type) and isinstance(cb2, type):
                self.assertEqual(cb1, cb2)
            elif isinstance(cb1, type) and not isinstance(cb2, type):
                self.assertEqual(cb1, cb2.__class__)
            elif not isinstance(cb1, type) and isinstance(cb2, type):
                self.assertEqual(cb1.__class__, cb2)
            else:
                self.assertEqual(cb1, cb2)

    def get_expected_events(self, trainer):
        expected_events = ["on_init_end", "on_train_begin"]
        step = 0
        train_dl_len = len(trainer.get_eval_dataloader())
        evaluation_events = ["on_prediction_step"] * len(trainer.get_eval_dataloader()) + ["on_log", "on_evaluate"]
        for _ in range(trainer.state.num_train_epochs):
            expected_events.append("on_epoch_begin")
            for _ in range(train_dl_len):
                step += 1
                expected_events += ["on_step_begin", "on_step_end"]
                if step % trainer.args.logging_steps == 0:
                    expected_events.append("on_log")
133
                if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
137
                    expected_events += evaluation_events.copy()
                if step % trainer.args.save_steps == 0:
                    expected_events.append("on_save")
            expected_events.append("on_epoch_end")
138
            if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
Sylvain Gugger's avatar
Sylvain Gugger committed
139
                expected_events += evaluation_events.copy()
140
        expected_events += ["on_log", "on_train_end"]
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
143
144
145
146
147
148
        return expected_events

    def test_init_callback(self):
        trainer = self.get_trainer()
        expected_callbacks = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        # Callbacks passed at init are added to the default callbacks
Stas Bekman's avatar
Stas Bekman committed
149
150
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback])
        expected_callbacks.append(MyTestTrainerCallback)
Sylvain Gugger's avatar
Sylvain Gugger committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
        trainer = self.get_trainer(disable_tqdm=True)
        expected_callbacks = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

    def test_add_remove_callback(self):
        expected_callbacks = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
        trainer = self.get_trainer()

        # We can add, pop, or remove by class name
        trainer.remove_callback(DefaultFlowCallback)
        expected_callbacks.remove(DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        trainer = self.get_trainer()
        cb = trainer.pop_callback(DefaultFlowCallback)
        self.assertEqual(cb.__class__, DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        trainer.add_callback(DefaultFlowCallback)
        expected_callbacks.insert(0, DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        # We can also add, pop, or remove by instance
        trainer = self.get_trainer()
        cb = trainer.callback_handler.callbacks[0]
        trainer.remove_callback(cb)
        expected_callbacks.remove(DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        trainer = self.get_trainer()
        cb1 = trainer.callback_handler.callbacks[0]
        cb2 = trainer.pop_callback(cb1)
        self.assertEqual(cb1, cb2)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

        trainer.add_callback(cb1)
        expected_callbacks.insert(0, DefaultFlowCallback)
        self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)

    def test_event_flow(self):
Stas Bekman's avatar
Stas Bekman committed
194
195
196
197
198
199
        import warnings

        # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
        warnings.simplefilter(action="ignore", category=UserWarning)

        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback])
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
202
203
204
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

        # Independent log/save/eval
Stas Bekman's avatar
Stas Bekman committed
205
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], logging_steps=5)
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
209
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

Stas Bekman's avatar
Stas Bekman committed
210
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], save_steps=5)
Sylvain Gugger's avatar
Sylvain Gugger committed
211
212
213
214
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

Stas Bekman's avatar
Stas Bekman committed
215
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], eval_steps=5, evaluation_strategy="steps")
Sylvain Gugger's avatar
Sylvain Gugger committed
216
217
218
219
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

Stas Bekman's avatar
Stas Bekman committed
220
        trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], evaluation_strategy="epoch")
Sylvain Gugger's avatar
Sylvain Gugger committed
221
222
223
224
225
226
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))

        # A bit of everything
        trainer = self.get_trainer(
Stas Bekman's avatar
Stas Bekman committed
227
228
229
230
231
            callbacks=[MyTestTrainerCallback],
            logging_steps=3,
            save_steps=10,
            eval_steps=5,
            evaluation_strategy="steps",
Sylvain Gugger's avatar
Sylvain Gugger committed
232
233
234
235
        )
        trainer.train()
        events = trainer.callback_handler.callbacks[-2].events
        self.assertEqual(events, self.get_expected_events(trainer))
236
237

        # warning should be emitted for duplicated callbacks
238
        with patch("transformers.trainer_callback.logger.warning") as warn_mock:
239
240
241
242
            trainer = self.get_trainer(
                callbacks=[MyTestTrainerCallback, MyTestTrainerCallback],
            )
            assert str(MyTestTrainerCallback) in warn_mock.call_args[0][0]