test_modeling_tf_openai.py 10.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import OpenAIGPTConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

22
23
from ..test_configuration_common import ConfigTester
from ..test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24
25
26
27


if is_tf_available():
    import tensorflow as tf
28

Sylvain Gugger's avatar
Sylvain Gugger committed
29
    from transformers.models.openai.modeling_tf_openai import (
30
        TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
31
        TFOpenAIGPTDoubleHeadsModel,
32
        TFOpenAIGPTForSequenceClassification,
33
34
        TFOpenAIGPTLMHeadModel,
        TFOpenAIGPTModel,
35
    )
thomwolf's avatar
thomwolf committed
36
37


38
39
class TFOpenAIGPTModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
40
41
        self,
        parent,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
66
        self.pad_token_id = self.vocab_size - 1
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
102
            # initializer_range=self.initializer_range,
103
            pad_token_id=self.pad_token_id,
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
123
        result = model(inputs)
124
125

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
126
        result = model(inputs)
127

Sylvain Gugger's avatar
Sylvain Gugger committed
128
        result = model(input_ids)
129

130
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
131
132
133
134

    def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
135
        result = model(inputs)
136
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

    def create_and_check_openai_gpt_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFOpenAIGPTDoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
153
        result = model(inputs)
154
        self.parent.assertEqual(
155
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
156
        )
157
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def create_and_check_openai_gpt_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFOpenAIGPTForSequenceClassification(config)
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


193
@require_tf
194
class TFOpenAIGPTModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
195

196
    all_model_classes = (
197
198
199
        (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification)
        if is_tf_available()
        else ()
200
    )
201
202
203
    all_generative_model_classes = (
        (TFOpenAIGPTLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
204
    test_head_masking = False
205
    test_onnx = False
thomwolf's avatar
thomwolf committed
206
207

    def setUp(self):
208
        self.model_tester = TFOpenAIGPTModelTester(self)
thomwolf's avatar
thomwolf committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)

    def test_openai_gpt_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)

226
227
228
229
230
231
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
232
233
234
235
236
237
238
239
240
241
242

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
243

244
245
246
247
    def test_openai_gpt_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)

248
    @slow
thomwolf's avatar
thomwolf committed
249
    def test_model_from_pretrained(self):
250
        for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
251
            model = TFOpenAIGPTModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
252
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
253
254


255
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
class TFOPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
        input_ids = tf.convert_to_tensor([[481, 4735, 544]], dtype=tf.int32)  # the president is
        expected_output_ids = [
            481,
            4735,
            544,
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
            487,
            544,
            240,
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
285
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)