test_modeling_flax_mt5.py 2.48 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import is_flax_available
18
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
19
20
21
22
23
24
25
26
27
28
29
30


if is_flax_available():
    import optax
    from flax.training.common_utils import onehot
    from transformers import AutoTokenizer, FlaxMT5ForConditionalGeneration
    from transformers.models.t5.modeling_flax_t5 import shift_tokens_right


@require_torch
@require_sentencepiece
@require_tokenizers
31
@require_flax
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
class MT5IntegrationTest(unittest.TestCase):
    @slow
    def test_small_integration_test(self):
        """
        For comparision run:
        >>> import t5  # pip install t5==0.7.1
        >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary

        >>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'
        >>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'
        >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)
        >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path)
        >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
        """

        model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
        tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")

        input_ids = tokenizer("Hello there", return_tensors="np").input_ids
        labels = tokenizer("Hi I am", return_tensors="np").input_ids

        decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id)

        logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()

        mtf_score = -(labels.shape[-1] * loss.item())

        EXPECTED_SCORE = -84.9127
        self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)