test_tokenization_mbart.py 13.7 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
16
import shutil
17
import tempfile
18
19
import unittest

20
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
21
from transformers.testing_utils import nested_simplify, require_sentencepiece, require_tokenizers, require_torch
22

23
from ..test_tokenization_common import TokenizerTesterMixin
24
25


26
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../fixtures/test_sentencepiece.model")
27
28


29
if is_torch_available():
30
    from transformers.models.mbart.modeling_mbart import shift_tokens_right
31

32
33
34
35
EN_CODE = 250004
RO_CODE = 250020


36
37
@require_sentencepiece
@require_tokenizers
38
39
class MBartTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = MBartTokenizer
40
41
    rust_tokenizer_class = MBartTokenizerFast
    test_rust_tokenizer = True
42
    test_sentencepiece = True
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    def setUp(self):
        super().setUp()

        # We have a SentencePiece fixture for testing
        tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True)
        tokenizer.save_pretrained(self.tmpdirname)

    def test_full_tokenizer(self):
        tokenizer = MBartTokenizer(SAMPLE_VOCAB, keep_accents=True)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is fals茅.")
        self.assertListEqual(
            tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "9",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "茅",
                ".",
            ],
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(
            ids,
            [
                value + tokenizer.fairseq_offset
                for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
                #                                       ^ unk: 2 + 1 = 3                  unk: 2 + 1 = 3 ^
            ],
        )

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            [
                SPIECE_UNDERLINE + "I",
                SPIECE_UNDERLINE + "was",
                SPIECE_UNDERLINE + "b",
                "or",
                "n",
                SPIECE_UNDERLINE + "in",
                SPIECE_UNDERLINE + "",
                "<unk>",
                "2",
                "0",
                "0",
                "0",
                ",",
                SPIECE_UNDERLINE + "and",
                SPIECE_UNDERLINE + "this",
                SPIECE_UNDERLINE + "is",
                SPIECE_UNDERLINE + "f",
                "al",
                "s",
                "<unk>",
                ".",
            ],
        )

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    # overwrite from test_tokenization_common to speed up test
    def test_save_pretrained(self):
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

        self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {})
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files + the tokenizer.json file for the fast one
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
                tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=True
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=False
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it saved the tokenizer.json file
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

199
200

@require_torch
201
202
@require_sentencepiece
@require_tokenizers
203
204
205
206
207
208
209
210
211
212
213
214
215
216
class MBartEnroIntegrationTest(unittest.TestCase):
    checkpoint_name = "facebook/mbart-large-en-ro"
    src_text = [
        " UN Chief Says There Is No Military Solution in Syria",
        """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
    ]
    tgt_text = [
        "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
        'Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.',
    ]
    expected_src_tokens = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE]

    @classmethod
    def setUpClass(cls):
217
218
219
        cls.tokenizer: MBartTokenizer = MBartTokenizer.from_pretrained(
            cls.checkpoint_name, src_lang="en_XX", tgt_lang="ro_RO"
        )
220
221
222
        cls.pad_token_id = 1
        return cls

223
224
225
226
227
    def check_language_codes(self):
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"], 250001)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"], 250004)
        self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"], 250020)

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    def test_enro_tokenizer_batch_encode_plus(self):
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_enro_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
        generated_ids = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_romanian)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_enro_tokenizer_truncation(self):
        src_text = ["this is gunna be a long sentence " * 20]
        assert isinstance(src_text[0], str)
        desired_max_length = 10
244
        ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
245
246
247
        self.assertEqual(ids[-2], 2)
        self.assertEqual(ids[-1], EN_CODE)
        self.assertEqual(len(ids), desired_max_length)
248
249
250
251
252
253
254
255
256
257

    def test_mask_token(self):
        self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [250026, 250001])

    def test_special_tokens_unaffacted_by_save_load(self):
        tmpdirname = tempfile.mkdtemp()
        original_special_tokens = self.tokenizer.fairseq_tokens_to_ids
        self.tokenizer.save_pretrained(tmpdirname)
        new_tok = MBartTokenizer.from_pretrained(tmpdirname)
        self.assertDictEqual(new_tok.fairseq_tokens_to_ids, original_special_tokens)
258
259
260

    @require_torch
    def test_batch_fairseq_parity(self):
261
262
263
264
265
        batch = self.tokenizer(self.src_text, padding=True)
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(self.tgt_text, padding=True, return_tensors="pt")
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id).tolist()
266

267
268
269
270
        # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
        assert batch.input_ids[1][-2:] == [2, EN_CODE]
        assert batch.decoder_input_ids[1][0] == RO_CODE
        assert batch.decoder_input_ids[1][-1] == 2
271
        assert labels[1][-2:].tolist() == [2, RO_CODE]
272
273

    @require_torch
274
275
276
    def test_enro_tokenizer_prepare_batch(self):
        batch = self.tokenizer(
            self.src_text, padding=True, truncation=True, max_length=len(self.expected_src_tokens), return_tensors="pt"
277
        )
278
279
280
281
282
283
284
285
286
287
288
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(
                self.tgt_text,
                padding=True,
                truncation=True,
                max_length=len(self.expected_src_tokens),
                return_tensors="pt",
            )
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

289
290
291
292
293
294
295
296
297
298
299
        self.assertIsInstance(batch, BatchEncoding)

        self.assertEqual((2, 14), batch.input_ids.shape)
        self.assertEqual((2, 14), batch.attention_mask.shape)
        result = batch.input_ids.tolist()[0]
        self.assertListEqual(self.expected_src_tokens, result)
        self.assertEqual(2, batch.decoder_input_ids[0, -1])  # EOS
        # Test that special tokens are reset
        self.assertEqual(self.tokenizer.prefix_tokens, [])
        self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, EN_CODE])

300
301
302
303
304
305
306
    def test_seq2seq_max_length(self):
        batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
        with self.tokenizer.as_target_tokenizer():
            targets = self.tokenizer(self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt")
        labels = targets["input_ids"]
        batch["decoder_input_ids"] = shift_tokens_right(labels, self.tokenizer.pad_token_id)

307
308
        self.assertEqual(batch.input_ids.shape[1], 3)
        self.assertEqual(batch.decoder_input_ids.shape[1], 10)
309
310
311

    @require_torch
    def test_tokenizer_translation(self):
312
313
314
        inputs = self.tokenizer._build_translation_inputs(
            "A test", return_tensors="pt", src_lang="en_XX", tgt_lang="ar_AR"
        )
315
316
317
318
319
320
321
322
323
324
325

        self.assertEqual(
            nested_simplify(inputs),
            {
                # A, test, EOS, en_XX
                "input_ids": [[62, 3034, 2, 250004]],
                "attention_mask": [[1, 1, 1, 1]],
                # ar_AR
                "forced_bos_token_id": 250001,
            },
        )