test_tokenization_marian.py 7.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
17
import tempfile
18
import unittest
19
from os.path import dirname
20
21
22
from pathlib import Path
from shutil import copyfile

23
from transformers import BatchEncoding, MarianTokenizer
24
from transformers.file_utils import is_sentencepiece_available, is_tf_available, is_torch_available
25
from transformers.testing_utils import require_sentencepiece, slow
26
27


28
if is_sentencepiece_available():
29
    from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
30

31
from ..test_tokenization_common import TokenizerTesterMixin
32
33


34
SAMPLE_SP = os.path.join(dirname(dirname(os.path.abspath(__file__))), "fixtures/test_sentencepiece.model")
35
36
37
38

mock_tokenizer_config = {"target_lang": "fi", "source_lang": "en"}
zh_code = ">>zh<<"
ORG_NAME = "Helsinki-NLP/"
39
40
41
42
43
44
45

if is_torch_available():
    FRAMEWORK = "pt"
elif is_tf_available():
    FRAMEWORK = "tf"
else:
    FRAMEWORK = "jax"
46
47


48
@require_sentencepiece
49
50
51
class MarianTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = MarianTokenizer
52
    test_rust_tokenizer = False
53
    test_sentencepiece = True
54
55
56
57
58
59

    def setUp(self):
        super().setUp()
        vocab = ["</s>", "<unk>", "鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est", "\u0120", "<pad>"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        save_dir = Path(self.tmpdirname)
60
61
62
63
64
        save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab"])
        save_json(mock_tokenizer_config, save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"])
        if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
            copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["source_spm"])
            copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["target_spm"])
65
66
67
68

        tokenizer = MarianTokenizer.from_pretrained(self.tmpdirname)
        tokenizer.save_pretrained(self.tmpdirname)

69
70
    def get_tokenizer(self, **kwargs) -> MarianTokenizer:
        return MarianTokenizer.from_pretrained(self.tmpdirname, **kwargs)
71

72
    def get_input_output_texts(self, tokenizer):
73
74
75
76
77
        return (
            "This is a test",
            "This is a test",
        )

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "</s>"
        token_id = 0

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "</s>")
        self.assertEqual(vocab_keys[1], "<unk>")
        self.assertEqual(vocab_keys[-1], "<pad>")
        self.assertEqual(len(vocab_keys), 9)

    def test_vocab_size(self):
        self.assertEqual(self.get_tokenizer().vocab_size, 9)

97
98
    def test_tokenizer_equivalence_en_de(self):
        en_de_tokenizer = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de")
99
        batch = en_de_tokenizer(["I am a small frog"], return_tensors=None)
100
101
102
        self.assertIsInstance(batch, BatchEncoding)
        expected = [38, 121, 14, 697, 38848, 0]
        self.assertListEqual(expected, batch.input_ids[0])
103
104
105
106
107
108

        save_dir = tempfile.mkdtemp()
        en_de_tokenizer.save_pretrained(save_dir)
        contents = [x.name for x in Path(save_dir).glob("*")]
        self.assertIn("source.spm", contents)
        MarianTokenizer.from_pretrained(save_dir)
109
110
111
112

    def test_outputs_not_longer_than_maxlen(self):
        tok = self.get_tokenizer()

113
114
115
        batch = tok(
            ["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK
        )
116
117
118
119
120
        self.assertIsInstance(batch, BatchEncoding)
        self.assertEqual(batch.input_ids.shape, (2, 512))

    def test_outputs_can_be_shorter(self):
        tok = self.get_tokenizer()
121
        batch_smaller = tok(["I am a tiny frog", "I am a small frog"], padding=True, return_tensors=FRAMEWORK)
122
123
        self.assertIsInstance(batch_smaller, BatchEncoding)
        self.assertEqual(batch_smaller.input_ids.shape, (2, 10))
124
125
126
127
128
129
130
131
132
133
134
135
136

    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}  # noqa: E501
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="Helsinki-NLP/opus-mt-en-de",
            revision="1a8c2263da11e68e50938f97e10cd57820bd504c",
            decode_kwargs={"use_source_tokenizer": True},
        )