test_tokenization_m2m_100.py 11.8 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import tempfile
import unittest
18
from os.path import dirname
Suraj Patil's avatar
Suraj Patil committed
19
20
21
22
23
from pathlib import Path
from shutil import copyfile

from transformers import M2M100Tokenizer, is_torch_available
from transformers.file_utils import is_sentencepiece_available
24
from transformers.testing_utils import nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow
Suraj Patil's avatar
Suraj Patil committed
25
26
27
28
29


if is_sentencepiece_available():
    from transformers.models.m2m_100.tokenization_m2m_100 import save_json, VOCAB_FILES_NAMES

30
from ..test_tokenization_common import TokenizerTesterMixin
Suraj Patil's avatar
Suraj Patil committed
31
32
33


if is_sentencepiece_available():
34
    SAMPLE_SP = os.path.join(dirname(dirname(os.path.abspath(__file__))), "fixtures/test_sentencepiece.model")
Suraj Patil's avatar
Suraj Patil committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48


if is_torch_available():
    from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right

EN_CODE = 128022
FR_CODE = 128028


@require_sentencepiece
class M2M100TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = M2M100Tokenizer
    test_rust_tokenizer = False
    test_seq2seq = False
49
    test_sentencepiece = True
Suraj Patil's avatar
Suraj Patil committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

    def setUp(self):
        super().setUp()

        vocab = ["</s>", "<unk>", "鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est", "\u0120", "<pad>"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        save_dir = Path(self.tmpdirname)
        save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"])
        if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
            copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"])

        tokenizer = M2M100Tokenizer.from_pretrained(self.tmpdirname)
        tokenizer.save_pretrained(self.tmpdirname)

    def get_tokenizer(self, **kwargs):
        return M2M100Tokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        return (
            "This is a test",
            "This is a test",
        )

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "</s>"
        token_id = 0

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "</s>")
        self.assertEqual(vocab_keys[1], "<unk>")
        self.assertEqual(vocab_keys[-1], "<s>")
        self.assertEqual(len(vocab_keys), 10)

    def test_vocab_size(self):
        self.assertEqual(self.get_tokenizer().vocab_size, 117)

Suraj Patil's avatar
Suraj Patil committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    @unittest.skip("Skip this test while all models are still to be uploaded.")
    def test_pretrained_model_lists(self):
        pass

    def test_full_tokenizer(self):
        tokenizer = self.get_tokenizer()

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [2, 3, 4, 5, 6],
        )

        back_tokens = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6])
        self.assertListEqual(back_tokens, ["鈻乀his", "鈻乮s", "鈻乤", "鈻乼", "est"])

        text = tokenizer.convert_tokens_to_string(tokens)
        self.assertEqual(text, "This is a test")

113
114
115
116
117
118
119
120
121
122
123
124
    @slow
    def test_tokenizer_integration(self):
        # fmt: off
        expected_encoding = {'input_ids': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}  # noqa: E501
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding,
            model_name="facebook/m2m100_418M",
            revision="c168bae485c864188cf9aa0e4108b0b6934dc91e",
        )

Suraj Patil's avatar
Suraj Patil committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

@require_torch
@require_sentencepiece
@require_tokenizers
class M2M100TokenizerIntegrationTest(unittest.TestCase):
    checkpoint_name = "facebook/m2m100_418M"
    src_text = [
        "In my opinion, there are two levels of response from the French government.",
        "NSA Affair Emphasizes Complete Lack of Debate on Intelligence",
    ]
    tgt_text = [
        "Selon moi, il y a deux niveaux de r茅ponse de la part du gouvernement fran莽ais.",
        "L'affaire NSA souligne l'absence totale de d茅bat sur le renseignement",
    ]

    # fmt: off
    expected_src_tokens = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2]
    # fmt: on

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: M2M100Tokenizer = M2M100Tokenizer.from_pretrained(
            cls.checkpoint_name, src_lang="en", tgt_lang="fr"
        )
        cls.pad_token_id = 1
        return cls

    def check_language_codes(self):
        self.assertEqual(self.tokenizer.get_lang_id("ar"), 128006)
        self.assertEqual(self.tokenizer.get_lang_id("en"), 128022)
        self.assertEqual(self.tokenizer.get_lang_id("ro"), 128076)
        self.assertEqual(self.tokenizer.get_lang_id("mr"), 128063)

    def test_tokenizer_batch_encode_plus(self):
        self.tokenizer.src_lang = "en"
        ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
        self.assertListEqual(self.expected_src_tokens, ids)

    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(FR_CODE, self.tokenizer.all_special_ids)
        # fmt: off
        generated_ids = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2]
        # fmt: on
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_french = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_french)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_special_tokens_unaffacted_by_save_load(self):
        tmpdirname = tempfile.mkdtemp()
        original_special_tokens = self.tokenizer.lang_token_to_id
        self.tokenizer.save_pretrained(tmpdirname)
        new_tok = M2M100Tokenizer.from_pretrained(tmpdirname)
        self.assertDictEqual(new_tok.lang_token_to_id, original_special_tokens)

    @require_torch
    def test_batch_fairseq_parity(self):
        self.tokenizer.src_lang = "en"
        self.tokenizer.tgt_lang = "fr"

        batch = self.tokenizer(self.src_text, padding=True, return_tensors="pt")
        with self.tokenizer.as_target_tokenizer():
            batch["labels"] = self.tokenizer(self.tgt_text, padding=True, return_tensors="pt").input_ids

        batch["decoder_input_ids"] = shift_tokens_right(
            batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id
        )

        for k in batch:
            batch[k] = batch[k].tolist()
        # batch = {k: v.tolist() for k,v in batch.items()}
        # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
        # batch.decoder_inputs_ids[0][0] ==
        assert batch.input_ids[1][0] == EN_CODE
        assert batch.input_ids[1][-1] == 2
        assert batch.labels[1][0] == FR_CODE
        assert batch.labels[1][-1] == 2
        assert batch.decoder_input_ids[1][:2] == [2, FR_CODE]

    @require_torch
    def test_src_lang_setter(self):
        self.tokenizer.src_lang = "mr"
        self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
        self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])

        self.tokenizer.src_lang = "zh"
        self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
        self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])

    @require_torch
    def test_as_target_tokenizer(self):
        self.tokenizer.tgt_lang = "mr"
        with self.tokenizer.as_target_tokenizer():
            self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")])
            self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
        self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])

        self.tokenizer.tgt_lang = "zh"
        with self.tokenizer.as_target_tokenizer():
            self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")])
            self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
        self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
227
228
229

    @require_torch
    def test_tokenizer_translation(self):
230
        inputs = self.tokenizer._build_translation_inputs("A test", return_tensors="pt", src_lang="en", tgt_lang="ar")
231
232
233
234
235
236
237
238
239
240
241

        self.assertEqual(
            nested_simplify(inputs),
            {
                # en_XX, A, test, EOS
                "input_ids": [[128022, 58, 4183, 2]],
                "attention_mask": [[1, 1, 1, 1]],
                # ar_AR
                "forced_bos_token_id": 128006,
            },
        )