test_modeling_longformer.py 29.1 KB
Newer Older
Iz Beltagy's avatar
Iz Beltagy committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Iz Beltagy's avatar
Iz Beltagy committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
from transformers import LongformerConfig, is_torch_available
20
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
Iz Beltagy's avatar
Iz Beltagy committed
21

22
23
from ..test_configuration_common import ConfigTester
from ..test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Iz Beltagy's avatar
Iz Beltagy committed
24
25
26
27


if is_torch_available():
    import torch
28

Iz Beltagy's avatar
Iz Beltagy committed
29
30
    from transformers import (
        LongformerForMaskedLM,
31
32
        LongformerForMultipleChoice,
        LongformerForQuestionAnswering,
33
        LongformerForSequenceClassification,
34
        LongformerForTokenClassification,
35
        LongformerModel,
Patrick von Platen's avatar
Patrick von Platen committed
36
        LongformerSelfAttention,
Iz Beltagy's avatar
Iz Beltagy committed
37
38
39
    )


40
class LongformerModelTester:
Iz Beltagy's avatar
Iz Beltagy committed
41
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
Iz Beltagy's avatar
Iz Beltagy committed
44
45
    ):
        self.parent = parent
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4
Iz Beltagy's avatar
Iz Beltagy committed
68
69
70
71
72

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window + 1` locations
73
74
        # (assuming no token with global attention, otherwise the last dimension of attentions
        # is x + self.attention_window + 1, where x is the number of tokens with global attention)
75
        self.key_length = self.attention_window + 2
Iz Beltagy's avatar
Iz Beltagy committed
76
77
78
79
80
81

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
82
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Iz Beltagy's avatar
Iz Beltagy committed
83
84
85
86
87
88
89
90
91
92
93
94
95

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

96
97
98
99
100
101
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return LongformerConfig(
Iz Beltagy's avatar
Iz Beltagy committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

116
117
118
119
120
121
122
123
    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
        output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
        output_without_mask = model(input_ids)["last_hidden_state"]
126
127
        self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4))

128
    def create_and_check_model(
Iz Beltagy's avatar
Iz Beltagy committed
129
130
131
132
133
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
137
138
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
Iz Beltagy's avatar
Iz Beltagy committed
139

140
    def create_and_check_model_with_global_attention_mask(
141
142
143
144
145
146
147
148
149
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerModel(config=config)
        model.to(torch_device)
        model.eval()
        global_attention_mask = input_mask.clone()
        global_attention_mask[:, input_mask.shape[-1] // 2] = 0
        global_attention_mask = global_attention_mask.to(torch_device)

Sylvain Gugger's avatar
Sylvain Gugger committed
150
        result = model(
151
152
153
154
155
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
        result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
        result = model(input_ids, global_attention_mask=global_attention_mask)
158

Stas Bekman's avatar
Stas Bekman committed
159
160
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
161

162
    def create_and_check_for_masked_lm(
Iz Beltagy's avatar
Iz Beltagy committed
163
164
165
166
167
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
168
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
169
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Iz Beltagy's avatar
Iz Beltagy committed
170

171
    def create_and_check_for_question_answering(
172
173
174
175
176
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = LongformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
177
        result = model(
178
179
            input_ids,
            attention_mask=input_mask,
180
            global_attention_mask=input_mask,
181
182
183
184
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
185
186
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
187

188
    def create_and_check_for_sequence_classification(
189
190
191
192
193
194
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
195
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
196
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
197

198
    def create_and_check_for_token_classification(
199
200
201
202
203
204
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = LongformerForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
205
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
206
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
207

208
    def create_and_check_for_multiple_choice(
209
210
211
212
213
214
215
216
217
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = LongformerForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
218
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
219
        result = model(
220
221
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
222
            global_attention_mask=multiple_choice_input_mask,
223
224
225
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
226
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
227

Iz Beltagy's avatar
Iz Beltagy committed
228
229
230
231
232
233
234
235
236
237
238
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
239
        global_attention_mask = torch.zeros_like(input_ids)
240
241
        global_attention_mask[:, -1] = 1

242
243
244
245
246
247
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
Iz Beltagy's avatar
Iz Beltagy committed
248
249
        return config, inputs_dict

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item()
        # Make sure there are exactly three sep_token_id
        input_ids[:, -3:] = config.sep_token_id
        input_mask = torch.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

Iz Beltagy's avatar
Iz Beltagy committed
270
271
272
273
274
275

@require_torch
class LongformerModelTest(ModelTesterMixin, unittest.TestCase):
    test_pruning = False  # pruning is not supported
    test_torchscript = False

276
277
278
279
    all_model_classes = (
        (
            LongformerModel,
            LongformerForMaskedLM,
280
281
282
283
            LongformerForSequenceClassification,
            LongformerForQuestionAnswering,
            LongformerForTokenClassification,
            LongformerForMultipleChoice,
284
285
286
287
        )
        if is_torch_available()
        else ()
    )
Iz Beltagy's avatar
Iz Beltagy committed
288
289
290
291
292
293
294
295

    def setUp(self):
        self.model_tester = LongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

296
    def test_model(self):
Iz Beltagy's avatar
Iz Beltagy committed
297
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
298
        self.model_tester.create_and_check_model(*config_and_inputs)
Iz Beltagy's avatar
Iz Beltagy committed
299

300
    def test_model_attention_mask_determinism(self):
301
302
303
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

304
    def test_model_global_attention_mask(self):
305
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
306
        self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs)
307

308
    def test_for_masked_lm(self):
Iz Beltagy's avatar
Iz Beltagy committed
309
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
310
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
Iz Beltagy's avatar
Iz Beltagy committed
311

312
    def test_for_question_answering(self):
313
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
314
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
315

316
317
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
318
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
319

320
321
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
322
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
323

324
325
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
326
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
327

328
329
330
331
    def test_retain_grad_hidden_states_attentions(self):
        # longformer cannot keep gradients in attentions or hidden states
        return

Iz Beltagy's avatar
Iz Beltagy committed
332

Patrick von Platen's avatar
Patrick von Platen committed
333
@require_torch
334
335
@require_sentencepiece
@require_tokenizers
Iz Beltagy's avatar
Iz Beltagy committed
336
class LongformerModelIntegrationTest(unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = hidden_states.reshape((1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = chunked_hidden_states.shape[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1)

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, 0, 4:],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )
        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3))
        self.assertTrue(
            torch.allclose(
                padded_hidden_states[0, 0, -1, :3],
                torch.zeros((3,), device=torch_device, dtype=torch.float32),
                atol=1e-3,
            )
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(hidden_states.shape, (1, 8, 4))
        padding = (0, 0, 0, 1)

        padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding)
        self.assertTrue(padded_hidden_states.shape, (1, 8, 5))

        expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32)
        self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6))
        self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6))

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))

        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = torch.tensor(
            [0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32
        )
        expected_slice_along_chunk = torch.tensor(
            [0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32
        )

        self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3))
        self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3))
        self.assertTrue(chunked_hidden_states.shape, (1, 3, 4, 4))

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()

        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
        chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1)
        self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8)

        hid_states_2 = chunked_hidden_states.clone()
        LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2)
        self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24)

        hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3]
        LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2)
        self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24)

        hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :]
        LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2)
        self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12)

    def test_layer_local_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.size()
481
482
483
484
485
486
487
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
        attention_mask[:, -2:] = -10000

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

Patrick von Platen's avatar
Patrick von Platen committed
488
        output_hidden_states = layer(
489
490
491
492
493
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
Patrick von Platen's avatar
Patrick von Platen committed
494
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 1],
                torch.tensor(
                    [0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

    def test_layer_global_attn(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
        batch_size, seq_length, hidden_size = hidden_states.size()
515
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
516
517

        # create attn mask
518
519
520
521
522
523
524
525
        attention_mask[0, -2:] = 10000.0
        attention_mask[0, -1:] = -10000.0
        attention_mask[1, 1:] = 10000.0

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

Patrick von Platen's avatar
Patrick von Platen committed
526
        output_hidden_states = layer(
527
528
529
530
531
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
Patrick von Platen's avatar
Patrick von Platen committed
532
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))

        self.assertTrue(
            torch.allclose(
                output_hidden_states[0, 2],
                torch.tensor(
                    [-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                output_hidden_states[1, -2],
                torch.tensor(
                    [-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    def test_layer_attn_probs(self):
        model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        model.eval()
        layer = model.encoder.layer[0].attention.self.to(torch_device)
        hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
        batch_size, seq_length, hidden_size = hidden_states.size()
        attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)

        # create attn mask
        attention_mask[0, -2:] = 10000.0
        attention_mask[0, -1:] = -10000.0
        attention_mask[1, 1:] = 10000.0

        is_index_masked = attention_mask < 0
        is_index_global_attn = attention_mask > 0
        is_global_attn = is_index_global_attn.flatten().any().item()

        output_hidden_states, local_attentions, global_attentions = layer(
            hidden_states,
            attention_mask=attention_mask,
            is_index_masked=is_index_masked,
            is_index_global_attn=is_index_global_attn,
            is_global_attn=is_global_attn,
Patrick von Platen's avatar
Patrick von Platen committed
583
            output_attentions=True,
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        )

        self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
        self.assertEqual(global_attentions.shape, (2, 2, 3, 4))

        # All tokens with global attention have weight 0 in local attentions.
        self.assertTrue(torch.all(local_attentions[0, 2:4, :, :] == 0))
        self.assertTrue(torch.all(local_attentions[1, 1:4, :, :] == 0))

        # The weight of all tokens with local attention must sum to 1.
        self.assertTrue(torch.all(torch.abs(global_attentions[0, :, :2, :].sum(dim=-1) - 1) < 1e-6))
        self.assertTrue(torch.all(torch.abs(global_attentions[1, :, :1, :].sum(dim=-1) - 1) < 1e-6))

        self.assertTrue(
            torch.allclose(
                local_attentions[0, 0, 0, :],
                torch.tensor(
                    [0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                local_attentions[1, 0, 0, :],
                torch.tensor(
                    [0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        # All the global attention weights must sum to 1.
        self.assertTrue(torch.all(torch.abs(global_attentions.sum(dim=-1) - 1) < 1e-6))

        self.assertTrue(
            torch.allclose(
                global_attentions[0, 0, 1, :],
                torch.tensor(
                    [0.2500, 0.2500, 0.2500, 0.2500],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

        self.assertTrue(
            torch.allclose(
                global_attentions[1, 0, 0, :],
                torch.tensor(
                    [0.2497, 0.2500, 0.2499, 0.2504],
                    dtype=torch.float32,
                    device=torch_device,
                ),
                atol=1e-3,
            )
        )

Iz Beltagy's avatar
Iz Beltagy committed
648
649
    @slow
    def test_inference_no_head(self):
650
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
651
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
652

653
654
655
        # 'Hello world!'
        input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device)
        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
656

657
658
659
660
661
662
663
664
665
666
667
668
        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device)
        self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4))
        self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4))

    @slow
    def test_inference_no_head_long(self):
        model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
        model.to(torch_device)

Iz Beltagy's avatar
Iz Beltagy committed
669
        # 'Hello world! ' repeated 1000 times
670
671
672
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Iz Beltagy's avatar
Iz Beltagy committed
673
674

        attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
675
676
        global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device)
        global_attention_mask[:, [1, 4, 21]] = 1  # Set global attention on a few random positions
Iz Beltagy's avatar
Iz Beltagy committed
677

678
        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
Iz Beltagy's avatar
Iz Beltagy committed
679

680
681
        expected_output_sum = torch.tensor(74585.8594, device=torch_device)
        expected_output_mean = torch.tensor(0.0243, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
682
683
684
685
        self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
        self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))

    @slow
686
    def test_inference_masked_lm_long(self):
687
        model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
688
        model.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
689
690

        # 'Hello world! ' repeated 1000 times
691
692
693
        input_ids = torch.tensor(
            [[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
        )  # long input
Patrick von Platen's avatar
Patrick von Platen committed
694
        input_ids = input_ids.to(torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
695

696
        loss, prediction_scores = model(input_ids, labels=input_ids).to_tuple()
Iz Beltagy's avatar
Iz Beltagy committed
697

698
699
700
        expected_loss = torch.tensor(0.0074, device=torch_device)
        expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device)
        expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device)
Iz Beltagy's avatar
Iz Beltagy committed
701
702
703
704

        self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
        self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))