test_modeling_fsmt.py 20.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import timeout_decorator  # noqa

from parameterized import parameterized
22
from transformers import FSMTConfig, is_torch_available
23
from transformers.file_utils import cached_property
24
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
25

26
27
28
from ..generation.test_generation_utils import GenerationTesterMixin
from ..test_configuration_common import ConfigTester
from ..test_modeling_common import ModelTesterMixin, ids_tensor
29
30
31
32


if is_torch_available():
    import torch
33
    from torch import nn
34

35
    from transformers import FSMTForConditionalGeneration, FSMTModel, FSMTTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
36
    from transformers.models.fsmt.modeling_fsmt import (
37
38
39
40
41
        SinusoidalPositionalEmbedding,
        _prepare_fsmt_decoder_inputs,
        invert_mask,
        shift_tokens_right,
    )
42
    from transformers.pipelines import TranslationPipeline
43
44


45
class FSMTModelTester:
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    def __init__(
        self,
        parent,
    ):
        self.parent = parent
        self.src_vocab_size = 99
        self.tgt_vocab_size = 99
        self.langs = ["ru", "en"]
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = False
        self.use_labels = False
        self.hidden_size = 16
        self.num_hidden_layers = 2
        self.num_attention_heads = 4
        self.intermediate_size = 4
        self.hidden_act = "relu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 20
        self.bos_token_id = 0
        self.pad_token_id = 1
        self.eos_token_id = 2
        torch.manual_seed(0)

        # hack needed for modeling_common tests - despite not really having this attribute in this model
        self.vocab_size = self.src_vocab_size

74
    def prepare_config_and_inputs(self):
75
76
77
78
79
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.src_vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = 2  # Eos Token

80
81
82
83
84
85
        config = self.get_config()
        inputs_dict = prepare_fsmt_inputs_dict(config, input_ids)
        return config, inputs_dict

    def get_config(self):
        return FSMTConfig(
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
            vocab_size=self.src_vocab_size,  # hack needed for common tests
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
        )

105
106
107
108
109
110
111
    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"]
        inputs_dict["decoder_attention_mask"] = inputs_dict["attention_mask"]
        inputs_dict["use_cache"] = False
        return config, inputs_dict

112
113
114
115
116

def prepare_fsmt_inputs_dict(
    config,
    input_ids,
    attention_mask=None,
117
118
    head_mask=None,
    decoder_head_mask=None,
119
    cross_attn_head_mask=None,
120
121
122
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
123
124
125
126
    if head_mask is None:
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
    if decoder_head_mask is None:
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
127
128
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
129
130
131
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
132
133
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
134
135
136
137
    }


@require_torch
138
class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
139
140
141
142
    all_model_classes = (FSMTModel, FSMTForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (FSMTForConditionalGeneration,) if is_torch_available() else ()
    is_encoder_decoder = True
    test_pruning = False
143
    test_missing_keys = False
144
145

    def setUp(self):
146
        self.model_tester = FSMTModelTester(self)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        self.langs = ["en", "ru"]
        config = {
            "langs": self.langs,
            "src_vocab_size": 10,
            "tgt_vocab_size": 20,
        }
        # XXX: hack to appease to all other models requiring `vocab_size`
        config["vocab_size"] = 99  # no such thing in FSMT
        self.config_tester = ConfigTester(self, config_class=FSMTConfig, **config)

    def test_config(self):
        self.config_tester.run_common_tests()

    # XXX: override test_model_common_attributes / different Embedding type
    def test_model_common_attributes(self):
162
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
163
164
165

        for model_class in self.all_model_classes:
            model = model_class(config)
166
167
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
168
            x = model.get_output_embeddings()
169
            self.assertTrue(x is None or isinstance(x, nn.modules.sparse.Embedding))
170
171

    def test_initialization_more(self):
172
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        model = FSMTModel(config)
        model.to(torch_device)
        model.eval()
        # test init
        # self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item())

        def _check_var(module):
            """Check that we initialized various parameters from N(0, config.init_std)."""
            self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2)

        _check_var(model.encoder.embed_tokens)
        _check_var(model.encoder.layers[0].self_attn.k_proj)
        _check_var(model.encoder.layers[0].fc1)
        # XXX: different std for fairseq version of SinusoidalPositionalEmbedding
        # self.assertAlmostEqual(torch.std(model.encoder.embed_positions.weights).item(), config.init_std, 2)

    def test_advanced_inputs(self):
190
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        config.use_cache = False
        inputs_dict["input_ids"][:, -2:] = config.pad_token_id
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
            config, inputs_dict["input_ids"]
        )
        model = FSMTModel(config).to(torch_device).eval()

        decoder_features_with_created_mask = model(**inputs_dict)[0]
        decoder_features_with_passed_mask = model(
            decoder_attention_mask=invert_mask(decoder_attn_mask), decoder_input_ids=decoder_input_ids, **inputs_dict
        )[0]
        _assert_tensors_equal(decoder_features_with_passed_mask, decoder_features_with_created_mask)
        useless_mask = torch.zeros_like(decoder_attn_mask)
        decoder_features = model(decoder_attention_mask=useless_mask, **inputs_dict)[0]
        self.assertTrue(isinstance(decoder_features, torch.Tensor))  # no hidden states or attentions
        self.assertEqual(
            decoder_features.size(),
            (self.model_tester.batch_size, self.model_tester.seq_length, config.tgt_vocab_size),
        )
        if decoder_attn_mask.min().item() < -1e3:  # some tokens were masked
            self.assertFalse((decoder_features_with_created_mask == decoder_features).all().item())

        # Test different encoder attention masks
        decoder_features_with_long_encoder_mask = model(
            inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"].long()
        )[0]
        _assert_tensors_equal(decoder_features_with_long_encoder_mask, decoder_features_with_created_mask)

219
    def test_save_load_missing_keys(self):
220
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
221

222
223
224
225
226
227
228
229
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

230
    @unittest.skip("Test has a segmentation fault on torch 1.8.0")
231
232
233
234
235
236
237
238
239
240
241
242
243
    def test_export_to_onnx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        model = FSMTModel(config).to(torch_device)
        with tempfile.TemporaryDirectory() as tmpdirname:
            torch.onnx.export(
                model,
                (inputs_dict["input_ids"], inputs_dict["attention_mask"]),
                f"{tmpdirname}/fsmt_test.onnx",
                export_params=True,
                opset_version=12,
                input_names=["input_ids", "attention_mask"],
            )

244
245
246
247
248
249
250
251
252
253
254
255
    @unittest.skip("can't be implemented for FSMT due to dual vocab.")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip("Passing inputs_embeds not implemented for FSMT.")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("model weights aren't tied in FSMT.")
    def test_tie_model_weights(self):
        pass

256
257
258
    @unittest.skip("TODO: Decoder embeddings cannot be resized at the moment")
    def test_resize_embeddings_untied(self):
        pass
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310


@require_torch
class FSMTHeadTests(unittest.TestCase):
    src_vocab_size = 99
    tgt_vocab_size = 99
    langs = ["ru", "en"]

    def _get_config(self):
        return FSMTConfig(
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=24,
            encoder_layers=2,
            decoder_layers=2,
            encoder_attention_heads=2,
            decoder_attention_heads=2,
            encoder_ffn_dim=32,
            decoder_ffn_dim=32,
            max_position_embeddings=48,
            eos_token_id=2,
            pad_token_id=1,
            bos_token_id=0,
        )

    def _get_config_and_data(self):
        input_ids = torch.tensor(
            [
                [71, 82, 18, 33, 46, 91, 2],
                [68, 34, 26, 58, 30, 82, 2],
                [5, 97, 17, 39, 94, 40, 2],
                [76, 83, 94, 25, 70, 78, 2],
                [87, 59, 41, 35, 48, 66, 2],
                [55, 13, 16, 58, 5, 2, 1],  # note padding
                [64, 27, 31, 51, 12, 75, 2],
                [52, 64, 86, 17, 83, 39, 2],
                [48, 61, 9, 24, 71, 82, 2],
                [26, 1, 60, 48, 22, 13, 2],
                [21, 5, 62, 28, 14, 76, 2],
                [45, 98, 37, 86, 59, 48, 2],
                [70, 70, 50, 9, 28, 0, 2],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        batch_size = input_ids.shape[0]
        config = self._get_config()
        return config, input_ids, batch_size

    def test_generate_beam_search(self):
311
        input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], dtype=torch.long, device=torch_device)
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        config = self._get_config()
        lm_model = FSMTForConditionalGeneration(config).to(torch_device)
        lm_model.eval()

        max_length = 5
        new_input_ids = lm_model.generate(
            input_ids.clone(),
            do_sample=True,
            num_return_sequences=1,
            num_beams=2,
            no_repeat_ngram_size=3,
            max_length=max_length,
        )
        self.assertEqual(new_input_ids.shape, (input_ids.shape[0], max_length))

    def test_shift_tokens_right(self):
328
        input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long)
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        shifted = shift_tokens_right(input_ids, 1)
        n_pad_before = input_ids.eq(1).float().sum()
        n_pad_after = shifted.eq(1).float().sum()
        self.assertEqual(shifted.shape, input_ids.shape)
        self.assertEqual(n_pad_after, n_pad_before - 1)
        self.assertTrue(torch.eq(shifted[:, 0], 2).all())

    def test_generate_fp16(self):
        config, input_ids, batch_size = self._get_config_and_data()
        attention_mask = input_ids.ne(1).to(torch_device)
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

    def test_dummy_inputs(self):
        config, *_ = self._get_config_and_data()
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        model(**model.dummy_inputs)

    def test_prepare_fsmt_decoder_inputs(self):
        config, *_ = self._get_config_and_data()
        input_ids = _long_tensor(([4, 4, 2]))
        decoder_input_ids = _long_tensor([[26388, 2, config.pad_token_id]])
        ignore = float("-inf")
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
            config, input_ids, decoder_input_ids
        )
        expected_causal_mask = torch.tensor(
            [[0, ignore, ignore], [0, 0, ignore], [0, 0, 0]]  # never attend to the final token, because its pad
        ).to(input_ids.device)
        self.assertEqual(decoder_attn_mask.size(), decoder_input_ids.size())
        self.assertTrue(torch.eq(expected_causal_mask, causal_mask).all())


def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
374
375
376
        if len(prefix) > 0:
            prefix = f"{prefix}: "
        raise AssertionError(f"{prefix}{a} != {b}")
377
378
379
380
381
382
383
384
385


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)


TOLERANCE = 1e-4


386
387
388
389
390
391
392
393
pairs = [
    ["en-ru"],
    ["ru-en"],
    ["en-de"],
    ["de-en"],
]


394
@require_torch
395
396
@require_sentencepiece
@require_tokenizers
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
class FSMTModelIntegrationTests(unittest.TestCase):
    tokenizers_cache = {}
    models_cache = {}
    default_mname = "facebook/wmt19-en-ru"

    @cached_property
    def default_tokenizer(self):
        return self.get_tokenizer(self.default_mname)

    @cached_property
    def default_model(self):
        return self.get_model(self.default_mname)

    def get_tokenizer(self, mname):
        if mname not in self.tokenizers_cache:
            self.tokenizers_cache[mname] = FSMTTokenizer.from_pretrained(mname)
        return self.tokenizers_cache[mname]

    def get_model(self, mname):
        if mname not in self.models_cache:
            self.models_cache[mname] = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device)
            if torch_device == "cuda":
                self.models_cache[mname].half()
        return self.models_cache[mname]

    @slow
    def test_inference_no_head(self):
        tokenizer = self.default_tokenizer
        model = FSMTModel.from_pretrained(self.default_mname).to(torch_device)

        src_text = "My friend computer will translate this for me"
        input_ids = tokenizer([src_text], return_tensors="pt")["input_ids"]
429
        input_ids = _long_tensor(input_ids).to(torch_device)
430
431
432
433
434
435
436
437
438
        inputs_dict = prepare_fsmt_inputs_dict(model.config, input_ids)
        with torch.no_grad():
            output = model(**inputs_dict)[0]
        expected_shape = torch.Size((1, 10, model.config.tgt_vocab_size))
        self.assertEqual(output.shape, expected_shape)
        # expected numbers were generated when en-ru model, using just fairseq's model4.pt
        # may have to adjust if switched to a different checkpoint
        expected_slice = torch.tensor(
            [[-1.5753, -1.5753, 2.8975], [-0.9540, -0.9540, 1.0299], [-3.3131, -3.3131, 0.5219]]
439
        ).to(torch_device)
440
441
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE))

442
    def translation_setup(self, pair):
443
444
445
446
447
448
449
450
451
452
        text = {
            "en": "Machine learning is great, isn't it?",
            "ru": "袦邪褕懈薪薪芯械 芯斜褍褔械薪懈械 - 褝褌芯 蟹写芯褉芯胁芯, 薪械 褌邪泻 谢懈?",
            "de": "Maschinelles Lernen ist gro脽artig, oder?",
        }

        src, tgt = pair.split("-")
        print(f"Testing {src} -> {tgt}")
        mname = f"facebook/wmt19-{pair}"

453
454
        src_text = text[src]
        tgt_text = text[tgt]
455
456
457

        tokenizer = self.get_tokenizer(mname)
        model = self.get_model(mname)
458
459
460
461
462
463
464
465
        return tokenizer, model, src_text, tgt_text

    @parameterized.expand(pairs)
    @slow
    def test_translation_direct(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)

        input_ids = tokenizer.encode(src_text, return_tensors="pt").to(torch_device)
466
467
468

        outputs = model.generate(input_ids)
        decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
469
470
471
472
473
474
475
476
477
478
        assert decoded == tgt_text, f"\n\ngot: {decoded}\nexp: {tgt_text}\n"

    @parameterized.expand(pairs)
    @slow
    def test_translation_pipeline(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(model, tokenizer, framework="pt", device=device)
        output = pipeline([src_text])
        self.assertEqual([tgt_text], [x["translation_text"] for x in output])
479
480
481
482
483
484
485
486
487


@require_torch
class TestSinusoidalPositionalEmbeddings(unittest.TestCase):
    padding_idx = 1
    tolerance = 1e-4

    def test_basic(self):
        input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device)
488
        emb1 = SinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6, padding_idx=self.padding_idx).to(
489
490
491
492
493
494
495
496
            torch_device
        )
        emb = emb1(input_ids)
        desired_weights = torch.tensor(
            [
                [9.0930e-01, 1.9999e-02, 2.0000e-04, -4.1615e-01, 9.9980e-01, 1.0000e00],
                [1.4112e-01, 2.9995e-02, 3.0000e-04, -9.8999e-01, 9.9955e-01, 1.0000e00],
            ]
497
        ).to(torch_device)
498
499
500
501
502
503
504
        self.assertTrue(
            torch.allclose(emb[0], desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n",
        )

    def test_odd_embed_dim(self):
        # odd embedding_dim  is allowed
505
        SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=self.padding_idx).to(torch_device)
506
507

        # odd num_embeddings is allowed
508
        SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=self.padding_idx).to(torch_device)
509
510
511
512
513
514
515
516
517
518
519

    @unittest.skip("different from marian (needs more research)")
    def test_positional_emb_weights_against_marian(self):

        desired_weights = torch.tensor(
            [
                [0, 0, 0, 0, 0],
                [0.84147096, 0.82177866, 0.80180490, 0.78165019, 0.76140374],
                [0.90929741, 0.93651021, 0.95829457, 0.97505713, 0.98720258],
            ]
        )
520
        emb1 = SinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512, padding_idx=self.padding_idx).to(
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
            torch_device
        )
        weights = emb1.weights.data[:3, :5]
        # XXX: only the 1st and 3rd lines match - this is testing against
        # verbatim copy of SinusoidalPositionalEmbedding from fairseq
        self.assertTrue(
            torch.allclose(weights, desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n",
        )

        # test that forward pass is just a lookup, there is no ignore padding logic
        input_ids = torch.tensor(
            [[4, 10, self.padding_idx, self.padding_idx, self.padding_idx]], dtype=torch.long, device=torch_device
        )
        no_cache_pad_zero = emb1(input_ids)[0]
        # XXX: only the 1st line matches the 3rd
        self.assertTrue(
            torch.allclose(torch.tensor(desired_weights, device=torch_device), no_cache_pad_zero[:3, :5], atol=1e-3)
        )