test_modeling_dpr.py 11.4 KB
Newer Older
Quentin Lhoest's avatar
Quentin Lhoest committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import tempfile
Quentin Lhoest's avatar
Quentin Lhoest committed
18
19
import unittest

20
from transformers import DPRConfig, is_torch_available
Quentin Lhoest's avatar
Quentin Lhoest committed
21
from transformers.testing_utils import require_torch, slow, torch_device
Quentin Lhoest's avatar
Quentin Lhoest committed
22

23
24
from ..test_configuration_common import ConfigTester
from ..test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Quentin Lhoest's avatar
Quentin Lhoest committed
25
26
27


if is_torch_available():
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
28
29
    import torch

30
    from transformers import DPRContextEncoder, DPRQuestionEncoder, DPRReader, DPRReaderTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
31
    from transformers.models.dpr.modeling_dpr import (
Quentin Lhoest's avatar
Quentin Lhoest committed
32
33
34
35
36
37
38
39
40
41
42
43
        DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
        DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
        DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
    )


class DPRModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
44
        is_training=False,
Quentin Lhoest's avatar
Quentin Lhoest committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
        projection_dim=0,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
        self.projection_dim = projection_dim

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
94
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Quentin Lhoest's avatar
Quentin Lhoest committed
95
96
97
98
99
100
101
102
103
104
105
106
107

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

108
109
110
111
112
113
        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return DPRConfig(
114
            projection_dim=self.projection_dim,
Quentin Lhoest's avatar
Quentin Lhoest committed
115
116
117
118
119
120
121
122
123
124
125
126
127
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
        )

128
    def create_and_check_context_encoder(
Quentin Lhoest's avatar
Quentin Lhoest committed
129
130
131
132
133
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = DPRContextEncoder(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
137
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
Quentin Lhoest's avatar
Quentin Lhoest committed
138

139
    def create_and_check_question_encoder(
Quentin Lhoest's avatar
Quentin Lhoest committed
140
141
142
143
144
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = DPRQuestionEncoder(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
145
146
147
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
148
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
Quentin Lhoest's avatar
Quentin Lhoest committed
149

150
    def create_and_check_reader(
Quentin Lhoest's avatar
Quentin Lhoest committed
151
152
153
154
155
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = DPRReader(config=config)
        model.to(torch_device)
        model.eval()
Lysandre's avatar
Lysandre committed
156
157
158
159
        result = model(
            input_ids,
            attention_mask=input_mask,
        )
Stas Bekman's avatar
Stas Bekman committed
160
161
162
163

        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,))
Quentin Lhoest's avatar
Quentin Lhoest committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids}
        return config, inputs_dict


@require_torch
class DPRModelTest(ModelTesterMixin, unittest.TestCase):

Lysandre's avatar
Lysandre committed
183
184
185
186
187
188
189
190
191
    all_model_classes = (
        (
            DPRContextEncoder,
            DPRQuestionEncoder,
            DPRReader,
        )
        if is_torch_available()
        else ()
    )
Quentin Lhoest's avatar
Quentin Lhoest committed
192
193
194
195
196
197
198
199
200
201
202
203
204

    test_resize_embeddings = False
    test_missing_keys = False  # why?
    test_pruning = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DPRModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DPRConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

205
    def test_context_encoder_model(self):
Quentin Lhoest's avatar
Quentin Lhoest committed
206
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
207
        self.model_tester.create_and_check_context_encoder(*config_and_inputs)
Quentin Lhoest's avatar
Quentin Lhoest committed
208

209
    def test_question_encoder_model(self):
Quentin Lhoest's avatar
Quentin Lhoest committed
210
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
211
        self.model_tester.create_and_check_question_encoder(*config_and_inputs)
Quentin Lhoest's avatar
Quentin Lhoest committed
212

213
    def test_reader_model(self):
Quentin Lhoest's avatar
Quentin Lhoest committed
214
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
215
        self.model_tester.create_and_check_reader(*config_and_inputs)
Quentin Lhoest's avatar
Quentin Lhoest committed
216

217
218
219
220
221
222
223
224
225
226
227
228
229
    def test_init_changed_config(self):
        config = self.model_tester.prepare_config_and_inputs()[0]

        model = DPRQuestionEncoder(config=config)
        model.to(torch_device)
        model.eval()

        with tempfile.TemporaryDirectory() as tmp_dirname:
            model.save_pretrained(tmp_dirname)
            model = DPRQuestionEncoder.from_pretrained(tmp_dirname, projection_dim=512)

        self.assertIsNotNone(model)

Quentin Lhoest's avatar
Quentin Lhoest committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    @slow
    def test_model_from_pretrained(self):
        for model_name in DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DPRContextEncoder.from_pretrained(model_name)
            self.assertIsNotNone(model)

        for model_name in DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DPRContextEncoder.from_pretrained(model_name)
            self.assertIsNotNone(model)

        for model_name in DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DPRQuestionEncoder.from_pretrained(model_name)
            self.assertIsNotNone(model)

        for model_name in DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DPRReader.from_pretrained(model_name)
            self.assertIsNotNone(model)
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279


@require_torch
class DPRModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head(self):
        model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", return_dict=False)
        model.to(torch_device)

        input_ids = torch.tensor(
            [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]], dtype=torch.long, device=torch_device
        )  # [CLS] hello, is my dog cute? [SEP]
        output = model(input_ids)[0]  # embedding shape = (1, 768)
        # compare the actual values for a slice.
        expected_slice = torch.tensor(
            [
                [
                    0.03236253,
                    0.12753335,
                    0.16818509,
                    0.00279786,
                    0.3896933,
                    0.24264945,
                    0.2178971,
                    -0.02335227,
                    -0.08481959,
                    -0.14324117,
                ]
            ],
            dtype=torch.float,
            device=torch_device,
        )
        self.assertTrue(torch.allclose(output[:, :10], expected_slice, atol=1e-4))
280
281
282
283
284

    @slow
    def test_reader_inference(self):
        tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
        model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
Lysandre Debut's avatar
Lysandre Debut committed
285
        model.to(torch_device)
286
287
288
289
290
291
292
293

        encoded_inputs = tokenizer(
            questions="What is love ?",
            titles="Haddaway",
            texts="What Is Love is a song recorded by the artist Haddaway",
            padding=True,
            return_tensors="pt",
        )
Lysandre Debut's avatar
Lysandre Debut committed
294
        encoded_inputs.to(torch_device)
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

        outputs = model(**encoded_inputs)

        # compare the actual values for a slice.
        expected_start_logits = torch.tensor(
            [[-10.3005, -10.7765, -11.4872, -11.6841, -11.9312, -10.3002, -9.8544, -11.7378, -12.0821, -10.2975]],
            dtype=torch.float,
            device=torch_device,
        )

        expected_end_logits = torch.tensor(
            [[-11.0684, -11.7041, -11.5397, -10.3465, -10.8791, -6.8443, -11.9959, -11.0364, -10.0096, -6.8405]],
            dtype=torch.float,
            device=torch_device,
        )
        self.assertTrue(torch.allclose(outputs.start_logits[:, :10], expected_start_logits, atol=1e-4))
        self.assertTrue(torch.allclose(outputs.end_logits[:, :10], expected_end_logits, atol=1e-4))