test_modeling_tf_ctrl.py 9.34 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import CTRLConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

22
23
from ..test_configuration_common import ConfigTester
from ..test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24
25
26


if is_tf_available():
patrickvonplaten's avatar
patrickvonplaten committed
27
    import tensorflow as tf
28

Sylvain Gugger's avatar
Sylvain Gugger committed
29
30
    from transformers.models.ctrl.modeling_tf_ctrl import (
        TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
31
        TFCTRLForSequenceClassification,
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
        TFCTRLLMHeadModel,
        TFCTRLModel,
    )
thomwolf's avatar
thomwolf committed
35
36


37
38
class TFCTRLModelTester(object):
    def __init__(
Lysandre's avatar
Lysandre committed
39
40
        self,
        parent,
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
65
        self.pad_token_id = self.vocab_size - 1
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
101
            # initializer_range=self.initializer_range,
102
            pad_token_id=self.pad_token_id,
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
122
        result = model(inputs)
123
124

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
125
        result = model(inputs)
126

Sylvain Gugger's avatar
Sylvain Gugger committed
127
        result = model(input_ids)
128

129
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
130
131
132
133

    def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
134
        result = model(inputs)
135
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def create_and_check_ctrl_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        inputs = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFCTRLForSequenceClassification(config)
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


170
@require_tf
171
class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
172

173
    all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel, TFCTRLForSequenceClassification) if is_tf_available() else ()
174
    all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
175
    test_head_masking = False
176
    test_onnx = False
thomwolf's avatar
thomwolf committed
177
178

    def setUp(self):
179
        self.model_tester = TFCTRLModelTester(self)
thomwolf's avatar
thomwolf committed
180
181
182
183
184
185
186
187
188
189
190
191
192
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs)

193
194
195
196
    def test_ctrl_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_for_sequence_classification(*config_and_inputs)

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        list_lm_models = [TFCTRLLMHeadModel]
        list_other_models_with_output_ebd = [TFCTRLForSequenceClassification]

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)

            if model_class in list_lm_models:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            elif model_class in list_other_models_with_output_ebd:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None

224
    @slow
thomwolf's avatar
thomwolf committed
225
    def test_model_from_pretrained(self):
226
        for model_name in TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
227
            model = TFCTRLModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
228
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
229
230


231
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
232
233
234
235
class TFCTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = TFCTRLLMHeadModel.from_pretrained("ctrl")
Patrick von Platen's avatar
Patrick von Platen committed
236
        input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32)  # Legal the president is
patrickvonplaten's avatar
patrickvonplaten committed
237
238
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
239
240
            0,
            1611,
patrickvonplaten's avatar
patrickvonplaten committed
241
            8,
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
            5,
            150,
            26449,
patrickvonplaten's avatar
patrickvonplaten committed
245
            2,
Patrick von Platen's avatar
Patrick von Platen committed
246
247
248
            19,
            348,
            469,
patrickvonplaten's avatar
patrickvonplaten committed
249
            3,
Patrick von Platen's avatar
Patrick von Platen committed
250
251
252
253
254
255
256
257
258
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
patrickvonplaten's avatar
patrickvonplaten committed
259
260

        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
261
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)