"tests/pipelines/hunyuan_video/__init__.py" did not exist on "6ab2dd18a4d17d90c92409886ac22a02acf25d7d"
test_tokenization_byt5.py 14.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
import json
import os
18
import re
Patrick von Platen's avatar
Patrick von Platen committed
19
20
21
import shutil
import tempfile
import unittest
22
from typing import Tuple
Patrick von Platen's avatar
Patrick von Platen committed
23

24
from transformers import AddedToken, BatchEncoding, ByT5Tokenizer
Patrick von Platen's avatar
Patrick von Platen committed
25
26
from transformers.file_utils import cached_property, is_tf_available, is_torch_available

27
from ..test_tokenization_common import TokenizerTesterMixin
Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


if is_torch_available():
    FRAMEWORK = "pt"
elif is_tf_available():
    FRAMEWORK = "tf"
else:
    FRAMEWORK = "jax"


class ByT5TokenizationTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = ByT5Tokenizer
    test_rust_tokenizer = False

    def setUp(self):
        super().setUp()
        tokenizer = ByT5Tokenizer()
        tokenizer.save_pretrained(self.tmpdirname)

    @cached_property
    def t5_base_tokenizer(self):
        return ByT5Tokenizer.from_pretrained("google/byt5-small")

    def get_tokenizer(self, **kwargs) -> ByT5Tokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
        # XXX The default common tokenizer tests assume that every ID is decodable on its own.
        # This assumption is invalid for ByT5 because single bytes might not be
        # valid utf-8 (byte 128 for instance).
        # Here we're overriding the smallest possible method to provide
        # a clean sequence without making the same assumption.

        toks = []
        for i in range(len(tokenizer)):
            try:
                tok = tokenizer.decode([i], clean_up_tokenization_spaces=False)
            except UnicodeDecodeError:
                pass
            toks.append((i, tok))

        toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
        toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks))
        if max_length is not None and len(toks) > max_length:
            toks = toks[:max_length]
        if min_length is not None and len(toks) < min_length and len(toks) > 0:
            while len(toks) < min_length:
                toks = toks + toks
        # toks_str = [t[1] for t in toks]
        toks_ids = [t[0] for t in toks]

        # Ensure consistency
        output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
        if " " not in output_txt and len(toks_ids) > 1:
            output_txt = (
                tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
                + " "
                + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
            )
        if with_prefix_space:
            output_txt = " " + output_txt
        output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
        return output_txt, output_ids

Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97
98
    def test_eos_treatment(self):
        tokenizer = self.t5_base_tokenizer
        batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"])
        batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""])
        self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"])

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def test_multibytes_char(self):
        tokenizer = self.t5_base_tokenizer
        src_text = "Unicode €."
        encoded = tokenizer(src_text)
        encoded_ids = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
        self.assertEqual(encoded["input_ids"], encoded_ids)

        # decoding
        decoded = tokenizer.decode(encoded_ids)
        self.assertEqual(decoded, "Unicode €.</s>")

        encoded = tokenizer("e è é ê ë")
        encoded_ids = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
        self.assertEqual(encoded["input_ids"], encoded_ids)
        # decoding
        decoded = tokenizer.decode(encoded_ids)
        self.assertEqual(decoded, "e è é ê ë</s>")

        # encode/decode, but with `encode` instead of `__call__`
        self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë")), "e è é ê ë</s>")

Patrick von Platen's avatar
Patrick von Platen committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    def test_prepare_batch_integration(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        # fmt: off
        expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
        # fmt: on
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
        self.assertIsInstance(batch, BatchEncoding)

        if FRAMEWORK != "jax":
            result = list(batch.input_ids.numpy()[0])
        else:
            result = list(batch.input_ids.tolist()[0])

        self.assertListEqual(expected_src_tokens, result)

        self.assertEqual((2, 37), batch.input_ids.shape)
        self.assertEqual((2, 37), batch.attention_mask.shape)

    def test_empty_target_text(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
        batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK)
        # check if input_ids are returned and no decoder_input_ids
        self.assertIn("input_ids", batch)
        self.assertIn("attention_mask", batch)
        self.assertNotIn("decoder_input_ids", batch)
        self.assertNotIn("decoder_attention_mask", batch)

    def test_max_length_integration(self):
        tokenizer = self.t5_base_tokenizer
        tgt_text = [
            "Summary of the text.",
            "Another summary.",
        ]
        with tokenizer.as_target_tokenizer():
            targets = tokenizer(
                tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK
            )
        self.assertEqual(32, targets["input_ids"].shape[1])

    def test_eos_in_input(self):
        tokenizer = self.t5_base_tokenizer
        src_text = ["A long paragraph for summarization. </s>"]
        tgt_text = ["Summary of the text. </s>"]
        # fmt: off
        expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
        expected_tgt_tokens = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
        # fmt: on

        batch = tokenizer(src_text)
        with tokenizer.as_target_tokenizer():
            targets = tokenizer(tgt_text)

        self.assertEqual(expected_src_tokens, batch["input_ids"][0])
        self.assertEqual(expected_tgt_tokens, targets["input_ids"][0])

    # cannot use default save_and_load_tokenzier test method because tokenzier has no vocab
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertNotEqual(tokenizer.model_max_length, 42)

        # Now let's start the test
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                self.assertListEqual(before_tokens, after_tokens)

                shutil.rmtree(tmpdirname)

        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                self.assertListEqual(before_tokens, after_tokens)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)

                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
                self.assertEqual(tokenizer.model_max_length, 43)

                shutil.rmtree(tmpdirname)

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    # There is a conflict between the default value of extra_ids and adding a new special token through additional_special_tokens
    # We need to add the extra_ids in the list of the arg additional_special_tokens
    def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
        tokenizer_list = []
        if self.test_slow_tokenizer:
            tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))

        if self.test_rust_tokenizer:
            tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))

        for tokenizer_class, tokenizer_utils in tokenizer_list:
            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer_utils.save_pretrained(tmp_dir)

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file:
                    special_tokens_map = json.load(json_file)

                with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file:
                    tokenizer_config = json.load(json_file)

                added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(125)]

                special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [
                    "an_additional_special_token"
                ]
                tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [
                    "an_additional_special_token"
                ]

                with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile:
                    json.dump(special_tokens_map, outfile)
                with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile:
                    json.dump(tokenizer_config, outfile)

                # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
                # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
                # "special_tokens_map.json" files
                tokenizer_without_change_in_init = tokenizer_class.from_pretrained(
                    tmp_dir,
                )
                self.assertIn(
                    "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens
                )
                # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
                self.assertEqual(
                    ["an_additional_special_token"],
                    tokenizer_without_change_in_init.convert_ids_to_tokens(
                        tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])
                    ),
                )

                # Now we test that we can change the value of additional_special_tokens in the from_pretrained
                new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)]
                tokenizer = tokenizer_class.from_pretrained(
                    tmp_dir,
                    additional_special_tokens=new_added_tokens,
                )

                self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
                self.assertEqual(
                    ["a_new_additional_special_token"],
                    tokenizer.convert_ids_to_tokens(
                        tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])
                    ),
                )

Patrick von Platen's avatar
Patrick von Platen committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    def test_decode_single_bytes(self):
        tokenizer_list = []
        if self.test_slow_tokenizer:
            tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))

        if self.test_rust_tokenizer:
            tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))

        for tokenizer_class, tokenizer_utils in tokenizer_list:
            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer_utils.save_pretrained(tmp_dir)

                tokenizer = tokenizer_class.from_pretrained(tmp_dir)

                self.assertTrue(tokenizer.decode([255]) == "")

Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    # tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list
    def test_pretrained_model_lists(self):
        pass

    # tokenizer does not have vocabulary
    def test_get_vocab(self):
        pass

    # inputs cannot be pretokenized since ids depend on whole input string and not just on single characters
    def test_pretokenized_inputs(self):
        pass

    # tests all ids in vocab => vocab doesn't exist so unnecessary to test
    def test_conversion_reversible(self):
        pass