test_tokenization_blenderbot_small.py 3.55 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the Blenderbot small tokenizer."""
import json
import os
import unittest

from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
    VOCAB_FILES_NAMES,
    BlenderbotSmallTokenizer,
)

26
from ..test_tokenization_common import TokenizerTesterMixin
27
28
29
30
31


class BlenderbotSmallTokenizerTest(TokenizerTesterMixin, unittest.TestCase):

    tokenizer_class = BlenderbotSmallTokenizer
32
    test_rust_tokenizer = False
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    def setUp(self):
        super().setUp()

        vocab = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"]
        vocab_tokens = dict(zip(vocab, range(len(vocab))))

        merges = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""]
        self.special_tokens_map = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_input_output_texts(self, tokenizer):
        input_text = "adapt act apte"
        output_text = "adapt act apte"
        return input_text, output_text

    def test_full_blenderbot_small_tokenizer(self):
        tokenizer = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
        text = "adapt act apte"
        bpe_tokens = ["adapt", "act", "ap@@", "te"]
        tokens = tokenizer.tokenize(text)
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]

        input_bpe_tokens = [0, 1, 2, 3, 4, 5]
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)

    def test_special_tokens_small_tok(self):
        tok = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M")
        assert tok("sam").input_ids == [1384]
        src_text = "I am a small frog."
        encoded = tok([src_text], padding=False, truncation=False)["input_ids"]
        decoded = tok.batch_decode(encoded, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        assert src_text != decoded  # I wish it did!
        assert decoded == "i am a small frog ."

    def test_empty_word_small_tok(self):
        tok = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M")
        src_text = "I am a small frog ."
        src_text_dot = "."
        encoded = tok(src_text)["input_ids"]
        encoded_dot = tok(src_text_dot)["input_ids"]

        assert encoded[-1] == encoded_dot[0]