test_modeling_bert_generation.py 12.1 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
from transformers import BertGenerationConfig, is_torch_available
20
21
from transformers.testing_utils import require_torch, slow, torch_device

22
23
24
from ..generation.test_generation_utils import GenerationTesterMixin
from ..test_configuration_common import ConfigTester
from ..test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
25
26
27


if is_torch_available():
28
29
    import torch

30
    from transformers import BertGenerationDecoder, BertGenerationEncoder
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


class BertGenerationEncoderTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=50,
        initializer_range=0.02,
        use_labels=True,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.use_labels = use_labels
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        if self.use_labels:
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

82
83
84
85
86
87
        config = self.get_config()

        return config, input_ids, input_mask, token_labels

    def get_config(self):
        return BertGenerationConfig(
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            token_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            token_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        input_mask,
        token_labels,
        **kwargs,
    ):
        model = BertGenerationEncoder(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        input_mask,
        token_labels,
        encoder_hidden_states,
        encoder_attention_mask,
        **kwargs,
    ):
        config.add_cross_attention = True
        model = BertGenerationEncoder(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        input_mask,
        token_labels,
        encoder_hidden_states,
        encoder_attention_mask,
        **kwargs,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = BertGenerationDecoder(config=config).to(torch_device).eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        input_mask,
        token_labels,
        *args,
    ):
        model = BertGenerationDecoder(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

    def prepare_config_and_inputs_for_common(self):
237
        config, input_ids, input_mask, token_labels = self.prepare_config_and_inputs()
238
239
240
241
242
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
243
class BertGenerationEncoderTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
244
245

    all_model_classes = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
246
    all_generative_model_classes = (BertGenerationDecoder,) if is_torch_available() else ()
247
248
249
250
251
252
253
254
255
256
257
258

    def setUp(self):
        self.model_tester = BertGenerationEncoderTester(self)
        self.config_tester = ConfigTester(self, config_class=BertGenerationConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

259
260
261
262
263
    def test_model_as_bert(self):
        config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs()
        config.model_type = "bert"
        self.model_tester.create_and_check_model(config, input_ids, input_mask, token_labels)

264
265
266
    def test_model_as_decoder(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
267
268
269
270

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

    def test_model_as_decoder_with_default_input_mask(self):
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            input_mask,
            token_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

        self.model_tester.create_and_check_model_as_decoder(
            config,
            input_ids,
            input_mask,
            token_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
        self.assertIsNotNone(model)
302
303
304
305
306
307
308
309


@require_torch
class BertGenerationEncoderIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
        model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
        input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]])
310
311
        with torch.no_grad():
            output = model(input_ids)[0]
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        expected_shape = torch.Size([1, 8, 1024])
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]]
        )
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))


@require_torch
class BertGenerationDecoderIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
        model = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
        input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]])
326
327
        with torch.no_grad():
            output = model(input_ids)[0]
328
329
330
331
332
333
        expected_shape = torch.Size([1, 8, 50358])
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]]
        )
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))