modeling_transfo_xl.py 55.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model.
17
    Adapted from https://github.com/kimiyoung/transformer-xl.
thomwolf's avatar
thomwolf committed
18
19
20
    In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
"""

21
22
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
23
24
25
26
27
import os
import json
import math
import logging
import collections
thomwolf's avatar
thomwolf committed
28
29
import sys
from io import open
thomwolf's avatar
thomwolf committed
30
31
32

import torch
import torch.nn as nn
33
import torch.nn.functional as F
thomwolf's avatar
thomwolf committed
34
35
36
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

thomwolf's avatar
thomwolf committed
37
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
38
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax, sample_logits
39
from .modeling_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
thomwolf's avatar
thomwolf committed
40
41
42

logger = logging.getLogger(__name__)

43
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP = {
44
45
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-pytorch_model.bin",
}
46
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
47
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-config.json",
thomwolf's avatar
thomwolf committed
48
}
49

50
51
52
53
54
def build_tf_to_pytorch_map(model, config):
    """ A map of modules from TF to PyTorch.
        This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.
    """
    tf_to_pt_map = {}
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    if hasattr(model, 'transformer'):
        # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
        tf_to_pt_map.update({
            "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
            "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias})
        for i, (out_l, proj_l, tie_proj) in enumerate(zip(
                                model.crit.out_layers,
                                model.crit.out_projs,
                                config.tie_projs)):
            layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i
            if config.tie_weight:
                tf_to_pt_map.update({
                    layer_str + 'b': out_l.bias})
            else:
                raise NotImplementedError
                # I don't think this is implemented in the TF code
                tf_to_pt_map.update({
                    layer_str + 'lookup_table': out_l.weight,
                    layer_str + 'b': out_l.bias})
            if not tie_proj:
                tf_to_pt_map.update({
                    layer_str + 'proj': proj_l
                    })
        # Now load the rest of the transformer
        model = model.transformer

thomwolf's avatar
thomwolf committed
82
    # Embeddings
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
        layer_str = "transformer/adaptive_embed/cutoff_%d/" % i
        tf_to_pt_map.update({
            layer_str + 'lookup_table': embed_l.weight,
            layer_str + 'proj_W': proj_l
            })

    # Transformer blocks
    for i, b in enumerate(model.layers):
        layer_str = "transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
            layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
            layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
            layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
            layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
            layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
            layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        for b in model.layers:
            r_r_list.append(b.dec_attn.r_r_bias)
            r_w_list.append(b.dec_attn.r_w_bias)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
    tf_to_pt_map.update({
        'transformer/r_r_bias': r_r_list,
        'transformer/r_w_bias': r_w_list})
    return tf_to_pt_map

def load_tf_weights_in_transfo_xl(model, config, tf_path):
    """ Load tf checkpoints in a pytorch model
    """
125
126
127
    try:
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
128
    except ImportError:
thomwolf's avatar
thomwolf committed
129
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
130
131
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
132
133
134
135
136
137
138
    # Build TF to PyTorch weights loading map
    tf_to_pt_map = build_tf_to_pytorch_map(model, config)

    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    tf_weights = {}
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
139
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        array = tf.train.load_variable(tf_path, name)
        tf_weights[name] = array

    for name, pointer in tf_to_pt_map.items():
        assert name in tf_weights
        array = tf_weights[name]
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if 'kernel' in name or 'proj' in name:
            array = np.transpose(array)
        if ('r_r_bias' in name or 'r_w_bias' in name) and len(pointer) > 1:
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
160
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
161
162
163
164
165
166
167
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
168
            logger.info("Initialize PyTorch weight {}".format(name))
169
170
171
172
173
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

thomwolf's avatar
thomwolf committed
174
    logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
175
176
177
    return model


178
class TransfoXLConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
179
    """Configuration class to store the configuration of a `TransfoXLModel`.
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `TransfoXLModel` or a configuration json file.
            cutoffs: cutoffs for the adaptive softmax
            d_model: Dimensionality of the model's hidden states.
            d_embed: Dimensionality of the embeddings
            d_head: Dimensionality of the model's heads.
            div_val: divident value for adapative input and softmax
            pre_lnorm: apply LayerNorm to the input instead of the output
            d_inner: Inner dimension in FF
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            tgt_len: number of tokens to predict
            ext_len: length of the extended context
            mem_len: length of the retained previous heads
            same_length: use the same attn length for all tokens
            proj_share_all_but_first: True to share all but first projs, False not to share.
            attn_type: attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
            clamp_len: use the same pos embeddings after clamp_len
            sample_softmax: number of samples in sampled softmax
            adaptive: use adaptive softmax
            tie_weight: tie the word embedding and softmax weights
            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention probabilities.
            untie_r: untie relative position biases
            embd_pdrop: The dropout ratio for the embeddings.
            init: parameter initializer to use
            init_range: parameters initialized by U(-init_range, init_range).
            proj_init_std: parameters initialized by N(0, init_std)
            init_std: parameters initialized by N(0, init_std)
thomwolf's avatar
thomwolf committed
212
    """
213
    pretrained_config_archive_map = TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP
214

thomwolf's avatar
thomwolf committed
215
216
217
    def __init__(self,
                 vocab_size_or_config_json_file=267735,
                 cutoffs=[20000, 40000, 200000],
thomwolf's avatar
thomwolf committed
218
219
220
221
222
223
                 d_model=1024,
                 d_embed=1024,
                 n_head=16,
                 d_head=64,
                 d_inner=4096,
                 div_val=4,
thomwolf's avatar
thomwolf committed
224
                 pre_lnorm=False,
thomwolf's avatar
thomwolf committed
225
                 n_layer=18,
226
                 tgt_len=128,
thomwolf's avatar
thomwolf committed
227
                 ext_len=0,
228
229
230
231
                 mem_len=1600,
                 clamp_len=1000,
                 same_length=True,
                 proj_share_all_but_first=True,
thomwolf's avatar
thomwolf committed
232
233
234
                 attn_type=0,
                 sample_softmax=-1,
                 adaptive=True,
thomwolf's avatar
thomwolf committed
235
                 tie_weight=True,
thomwolf's avatar
thomwolf committed
236
237
                 dropout=0.1,
                 dropatt=0.0,
thomwolf's avatar
thomwolf committed
238
                 untie_r=True,
thomwolf's avatar
thomwolf committed
239
240
241
                 init="normal",
                 init_range=0.01,
                 proj_init_std=0.01,
thomwolf's avatar
thomwolf committed
242
243
                 init_std=0.02,
                 **kwargs):
thomwolf's avatar
thomwolf committed
244
245
        """Constructs TransfoXLConfig.
        """
thomwolf's avatar
thomwolf committed
246
247
        super(TransfoXLConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
248
249
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
thomwolf's avatar
thomwolf committed
250
251
252
253
254
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
255
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
256
257
            self.cutoffs = []
            self.cutoffs.extend(cutoffs)
thomwolf's avatar
thomwolf committed
258
            self.tie_weight = tie_weight
259
260
261
262
            if proj_share_all_but_first:
                self.tie_projs = [False] + [True] * len(self.cutoffs)
            else:
                self.tie_projs = [False] + [False] * len(self.cutoffs)
thomwolf's avatar
thomwolf committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            self.d_model = d_model
            self.d_embed = d_embed
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.pre_lnorm = pre_lnorm
            self.n_layer = n_layer
            self.n_head = n_head
            self.tgt_len = tgt_len
            self.ext_len = ext_len
            self.mem_len = mem_len
            self.same_length = same_length
            self.attn_type = attn_type
            self.clamp_len = clamp_len
            self.sample_softmax = sample_softmax
            self.adaptive = adaptive
            self.dropout = dropout
            self.dropatt = dropatt
thomwolf's avatar
thomwolf committed
281
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
282
283
284
285
286
287
288
289
            self.init = init
            self.init_range = init_range
            self.proj_init_std = proj_init_std
            self.init_std = init_std
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
thomwolf committed
290
291
292
293
    @property
    def vocab_size(self):
        return self.n_token

thomwolf's avatar
thomwolf committed
294
295
296
297
    @vocab_size.setter
    def vocab_size(self, value):
        self.n_token = value

thomwolf's avatar
thomwolf committed
298
299
300
301
302
303
304
305
306
307
308
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer
thomwolf's avatar
thomwolf committed
309

thomwolf's avatar
thomwolf committed
310

thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]


thomwolf's avatar
thomwolf committed
330

thomwolf's avatar
thomwolf committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
class PositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.CoreNet = nn.Sequential(
            nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

thomwolf's avatar
thomwolf committed
346
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
            core_out = self.CoreNet(self.layer_norm(inp))

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
            core_out = self.CoreNet(inp)

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

        return output

thomwolf's avatar
thomwolf committed
366
367


thomwolf's avatar
thomwolf committed
368
369
class MultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0, 
thomwolf's avatar
thomwolf committed
370
                 pre_lnorm=False, r_r_bias=None, r_w_bias=None, output_attentions=False):
thomwolf's avatar
thomwolf committed
371
372
        super(MultiHeadAttn, self).__init__()

thomwolf's avatar
thomwolf committed
373
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
374
375
376
377
378
379
380
381
382
383
384
385
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

thomwolf's avatar
thomwolf committed
386
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
387
388
389
390
391

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
392
393
394
395
396
397
398
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
399
    def forward(self, h, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
432
433
434
435
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
436
437
438
439
440
441
442
443
444
445
446
        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
447
            outputs = [h + attn_out]
thomwolf's avatar
thomwolf committed
448
449
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
450
            outputs = [self.layer_norm(h + attn_out)]
thomwolf's avatar
thomwolf committed
451

thomwolf's avatar
thomwolf committed
452
453
454
455
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
456
457
458

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
thomwolf's avatar
thomwolf committed
459
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False,
thomwolf's avatar
thomwolf committed
460
                 r_r_bias=None, r_w_bias=None, output_attentions=False):
thomwolf's avatar
thomwolf committed
461
462
        super(RelMultiHeadAttn, self).__init__()

thomwolf's avatar
thomwolf committed
463
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
464
465
466
467
468
469
470
471
472
473
474
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

thomwolf's avatar
thomwolf committed
475
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
476
477
478
479
480

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
481
482
483
484
485
486
487
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
thomwolf's avatar
thomwolf committed
518
519
        zero_pad_shape = (x.size(0), 1) + x.size()[2:]
        zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
thomwolf's avatar
thomwolf committed
520
521
        x_padded = torch.cat([zero_pad, x], dim=1)

thomwolf's avatar
thomwolf committed
522
523
        x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
        x_padded = x_padded.view(*x_padded_shape)
thomwolf's avatar
thomwolf committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

thomwolf's avatar
thomwolf committed
542
    def forward(self, w, r, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
573
        rw_head_q = w_head_q + self.r_w_bias                                    # qlen x bsz x n_head x d_head
thomwolf's avatar
thomwolf committed
574
575
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

thomwolf's avatar
thomwolf committed
576
        rr_head_q = w_head_q + self.r_r_bias
thomwolf's avatar
thomwolf committed
577
578
579
580
581
582
583
584
585
586
587
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
588
                    attn_mask[None,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
589
590
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
591
                    attn_mask[:,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
592
593
594
595
596

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
597
598
599
600
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
601
602
603
604
605
606
607
608
609
610
611
612
613
        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
614
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
615
616
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
617
            outputs = [self.layer_norm(w + attn_out)]
thomwolf's avatar
thomwolf committed
618

thomwolf's avatar
thomwolf committed
619
620
621
622
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
623
624
625
626
627

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

thomwolf's avatar
thomwolf committed
628
    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
689
690
691
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
692
693
694
695
696
697
698
699
700
701
702
703
704
        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
705
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
706
707
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
708
709
710
711
712
713
714
            outputs = [self.layer_norm(w + attn_out)]

        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs

thomwolf's avatar
thomwolf committed
715
716
717
718
719
720
721
722
723
724


class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
725
    def forward(self, dec_inp, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
726

thomwolf's avatar
thomwolf committed
727
728
729
        attn_outputs = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])
thomwolf's avatar
thomwolf committed
730

thomwolf's avatar
thomwolf committed
731
732
733
        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
734
735
736
737
738
739
740
741
742
743
744

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
745
    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
746

thomwolf's avatar
thomwolf committed
747
        attn_outputs = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
thomwolf's avatar
thomwolf committed
748
                               attn_mask=dec_attn_mask,
thomwolf's avatar
thomwolf committed
749
750
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])
thomwolf's avatar
thomwolf committed
751

thomwolf's avatar
thomwolf committed
752
753
754
        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
755
756
757
758
759
760
761
762
763
764
765

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
766
    def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
767

thomwolf's avatar
thomwolf committed
768
        attn_outputs = self.dec_attn(dec_inp, r,
thomwolf's avatar
thomwolf committed
769
                               attn_mask=dec_attn_mask,
thomwolf's avatar
thomwolf committed
770
771
772
773
774
775
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])

        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834



class AdaptiveEmbedding(nn.Module):
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, 
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed)))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_emb_i)))

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
                embed  = F.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], 
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

thomwolf's avatar
thomwolf committed
835
836
            embed_shape = inp.size() + (self.d_proj,)
            embed = emb_flat.view(embed_shape)
thomwolf's avatar
thomwolf committed
837
838
839
840
841
842

        embed.mul_(self.emb_scale)

        return embed


843
class TransfoXLPreTrainedModel(PreTrainedModel):
844
845
846
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
847
    config_class = TransfoXLConfig
848
    pretrained_model_archive_map = TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
849
850
851
    load_tf_weights = load_tf_weights_in_transfo_xl
    base_model_prefix = "transformer"

852
853
854
    def __init__(self, *inputs, **kwargs):
        super(TransfoXLPreTrainedModel, self).__init__(*inputs, **kwargs)

855
    def _init_weight(self, weight):
856
857
858
859
        if self.config.init == 'uniform':
            nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
        elif self.config.init == 'normal':
            nn.init.normal_(weight, 0.0, self.config.init_std)
thomwolf's avatar
thomwolf committed
860

861
    def _init_bias(self, bias):
862
863
864
865
866
867
868
869
        nn.init.constant_(bias, 0.0)

    def init_weights(self, m):
        """ Initialize the weights.
        """
        classname = m.__class__.__name__
        if classname.find('Linear') != -1:
            if hasattr(m, 'weight') and m.weight is not None:
870
                self._init_weight(m.weight)
871
            if hasattr(m, 'bias') and m.bias is not None:
872
                self._init_bias(m.bias)
873
874
875
876
877
878
879
        elif classname.find('AdaptiveEmbedding') != -1:
            if hasattr(m, 'emb_projs'):
                for i in range(len(m.emb_projs)):
                    if m.emb_projs[i] is not None:
                        nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('Embedding') != -1:
            if hasattr(m, 'weight'):
880
                self._init_weight(m.weight)
881
882
        elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
            if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
883
                self._init_weight(m.cluster_weight)
884
            if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
885
                self._init_bias(m.cluster_bias)
886
887
888
889
890
891
892
893
            if hasattr(m, 'out_projs'):
                for i in range(len(m.out_projs)):
                    if m.out_projs[i] is not None:
                        nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('LayerNorm') != -1:
            if hasattr(m, 'weight'):
                nn.init.normal_(m.weight, 1.0, self.config.init_std)
            if hasattr(m, 'bias') and m.bias is not None:
894
                self._init_bias(m.bias)
895
        else:
896
            if hasattr(m, 'r_emb'):
897
                self._init_weight(m.r_emb)
898
            if hasattr(m, 'r_w_bias'):
899
                self._init_weight(m.r_w_bias)
900
            if hasattr(m, 'r_r_bias'):
901
                self._init_weight(m.r_r_bias)
902
            if hasattr(m, 'r_bias'):
903
                self._init_bias(m.r_bias)
thomwolf's avatar
thomwolf committed
904

905
906
    def set_num_special_tokens(self, num_special_tokens):
        pass
thomwolf's avatar
thomwolf committed
907

908
909

class TransfoXLModel(TransfoXLPreTrainedModel):
thomwolf's avatar
thomwolf committed
910
911
    """Transformer XL model ("Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context").

912
    Transformer XL uses relative positioning (with sinusiodal patterns) and adaptive softmax inputs which means that:
thomwolf's avatar
thomwolf committed
913

914
915
916
917
918
        - you don't need to specify positioning embeddings indices.

        - the tokens in the vocabulary have to be sorted in decreasing frequency.

    Args:
thomwolf's avatar
thomwolf committed
919
920
        config: a TransfoXLConfig class instance with the configuration to build a new model

921
922
923
924
925

    Example::

        config = TransfoXLConfig()
        model = TransfoXLModel(config)
thomwolf's avatar
thomwolf committed
926
    """
927
928
    def __init__(self, config):
        super(TransfoXLModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
929
930
931
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

932
933
934
935
936
937
938
939
940
        self.n_token = config.n_token

        self.d_embed = config.d_embed
        self.d_model = config.d_model
        self.n_head = config.n_head
        self.d_head = config.d_head

        self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs, 
                                          div_val=config.div_val)
thomwolf's avatar
thomwolf committed
941

942
        self.drop = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
943

944
945
946
947
948
949
950
951
952
953
        self.n_layer = config.n_layer

        self.tgt_len = config.tgt_len
        self.mem_len = config.mem_len
        self.ext_len = config.ext_len
        self.max_klen = config.tgt_len + config.ext_len + config.mem_len

        self.attn_type = config.attn_type

        if not config.untie_r:
thomwolf's avatar
thomwolf committed
954
955
956
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))

thomwolf's avatar
thomwolf committed
957
        self.layers = nn.ModuleList()
958
959
        if config.attn_type == 0: # the default attention
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
960
961
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
962
963
964
965
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
966
967
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
968
                )
969
970
        elif config.attn_type == 1: # learnable embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
971
972
                self.layers.append(
                    RelLearnableDecoderLayer(
973
974
975
976
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
977
978
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
979
                )
980
981
        elif config.attn_type in [2, 3]: # absolute embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
982
983
                self.layers.append(
                    DecoderLayer(
984
985
986
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
987
988
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
989
990
                )

991
992
        self.same_length = config.same_length
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 1: # learnable
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
            self.r_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
1006

thomwolf's avatar
thomwolf committed
1007
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1008

thomwolf's avatar
thomwolf committed
1009
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
1010
        return self.word_emb
thomwolf's avatar
thomwolf committed
1011

thomwolf's avatar
thomwolf committed
1012
1013
1014
    def backward_compatible(self):
        self.sample_softmax = -1

thomwolf's avatar
thomwolf committed
1015
1016
1017
1018
1019
    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

thomwolf's avatar
thomwolf committed
1020
1021
1022
1023
    def _prune_heads(self, heads):
        logger.info("Head pruning is not implemented for Transformer-XL model")
        pass

1024
    def init_mems(self, data):
thomwolf's avatar
thomwolf committed
1025
1026
1027
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
1028
            for i in range(self.n_layer):
1029
1030
                empty = torch.zeros(self.mem_len, data.size(1), self.config.d_model,
                                    dtype=param.dtype, device=param.device)
thomwolf's avatar
thomwolf committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

thomwolf's avatar
thomwolf committed
1060
    def _forward(self, dec_inp, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1061
1062
        qlen, bsz = dec_inp.size()

thomwolf's avatar
thomwolf committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layer

thomwolf's avatar
thomwolf committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
            all_ones = word_emb.new_ones(qlen, klen)
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
                    + torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None] # -1
        else:
            dec_attn_mask = torch.triu(
                word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]

        hids = []
thomwolf's avatar
thomwolf committed
1096
        attentions = []
thomwolf's avatar
thomwolf committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        if self.attn_type == 0: # default
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device, 
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            for i, layer in enumerate(self.layers):
1108
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1109
                mems_i = None if mems is None else mems[i]
thomwolf's avatar
thomwolf committed
1110
1111
1112
1113
1114
                layer_outputs = layer(core_out, pos_emb, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1115
1116
1117
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            for i, layer in enumerate(self.layers):
1118
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1119
1120
1121
1122
1123
1124
1125
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
thomwolf's avatar
thomwolf committed
1126
1127
1128
1129
1130
1131
                layer_outputs = layer(core_out, r_emb, self.r_w_bias[i],
                                      r_bias, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            for i, layer in enumerate(self.layers):
1142
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1143
1144
1145
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
thomwolf's avatar
thomwolf committed
1146
1147
1148
1149
1150
                layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
                                 mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1151
1152
1153
1154
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            for i, layer in enumerate(self.layers):
1155
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

thomwolf's avatar
thomwolf committed
1168
1169
1170
1171
1172
                layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1173
1174
1175
1176
1177

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

thomwolf's avatar
thomwolf committed
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
        # We transpose back here to shape [bsz, len, hidden_dim]
        outputs = [core_out.transpose(0, 1).contiguous(), new_mems]
        if self.output_hidden_states:
            # Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
            hids.append(core_out)
            hids = list(t.transpose(0, 1).contiguous() for t in hids)
            outputs.append(hids)
        if self.output_attentions:
            # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
            attentions = list(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
            outputs.append(attentions)
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)

    def forward(self, input_ids, mems=None, head_mask=None):
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with the token indices selected in the range [0, self.config.n_token[
            `mems`: optional memory of hidden states from previous forward passes
                as a list (num layers) of hidden states at the entry of each layer
                each hidden states has shape [self.config.mem_len, bsz, self.config.d_model]
                Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`

        Returns:
            A tuple of ``(last_hidden_state, new_mems)``.

                ``last_hidden_state``: the encoded-hidden-states at the top of the model
                as a ``torch.FloatTensor`` of size [batch_size, sequence_length, self.config.d_model]

                ``new_mems``: list (num layers) of updated mem states at the entry of each layer
                each mem state is a ``torch.FloatTensor`` of size [self.config.mem_len, batch_size, self.config.d_model]
                Note that the first two dimensions are transposed in ``mems`` with regards to ``input_ids`` and
                ``labels``

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_ids_next = torch.LongTensor([[53, 21, 1], [64, 23, 100]])

            last_hidden_state, new_mems = model(input_ids)
            # or
            last_hidden_state, new_mems = model.forward(input_ids)

            # Another time on input_ids_next using the memory:
            last_hidden_state, new_mems = model(input_ids_next, new_mems)
thomwolf's avatar
thomwolf committed
1226
        """
1227
1228
1229
1230
        # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
        # so we transpose here from shape [bsz, len] to shape [len, bsz]
        input_ids = input_ids.transpose(0, 1).contiguous()

thomwolf's avatar
thomwolf committed
1231
1232
        if mems is None:
            mems = self.init_mems(input_ids)
thomwolf's avatar
thomwolf committed
1233
        outputs = self._forward(input_ids, mems=mems, head_mask=head_mask)
1234

thomwolf's avatar
thomwolf committed
1235
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
1236
1237
1238
1239
1240


class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
    """Transformer XL model ("Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context").

1241
    This model adds an (adaptive) softmax head on top of the ``TransfoXLModel``
thomwolf's avatar
thomwolf committed
1242

1243
    Transformer XL uses a relative positioning (with sinusoidal patterns) and adaptive softmax inputs which means that:
thomwolf's avatar
thomwolf committed
1244

1245
        - you don't need to specify positioning embeddings indices
thomwolf's avatar
thomwolf committed
1246

1247
        - the tokens in the vocabulary have to be sorted in decreasing frequency.
thomwolf's avatar
thomwolf committed
1248

1249
    Call ``self.tie_weights()`` if you update/load the weights of the transformer to keep the weights tied.
thomwolf's avatar
thomwolf committed
1250

1251
1252
    Args:
        config: a ``TransfoXLConfig`` class instance with the configuration to build a new model
thomwolf's avatar
thomwolf committed
1253
1254


1255
    Example::
thomwolf's avatar
thomwolf committed
1256

1257
1258
        config = TransfoXLConfig()
        model = TransfoXLModel(config)
thomwolf's avatar
thomwolf committed
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
    """
    def __init__(self, config):
        super(TransfoXLLMHeadModel, self).__init__(config)
        self.transformer = TransfoXLModel(config)
        self.sample_softmax = config.sample_softmax
        # use sampled softmax
        if config.sample_softmax > 0:
            self.out_layer = nn.Linear(config.d_model, config.n_token)
            self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
        # use adaptive softmax (including standard softmax)
        else:
            self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model, 
                                                    config.cutoffs, div_val=config.div_val)
        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
1276
1277
1278
        """
        Run this to be sure output and input (adaptive) softmax weights are tied
        """
thomwolf's avatar
thomwolf committed
1279
1280
1281
1282
1283
1284
1285
1286
        # sampled softmax
        if self.sample_softmax > 0:
            if self.config.tie_weight:
                self.out_layer.weight = self.transformer.word_emb.weight
        # adaptive softmax (including standard softmax)
        else:
            if self.config.tie_weight:
                for i in range(len(self.crit.out_layers)):
thomwolf's avatar
thomwolf committed
1287
1288
                    self._tie_or_clone_weights(self.crit.out_layers[i],
                                               self.transformer.word_emb.emb_layers[i])
thomwolf's avatar
thomwolf committed
1289
1290
1291
            if self.config.tie_projs:
                for i, tie_proj in enumerate(self.config.tie_projs):
                    if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
thomwolf's avatar
thomwolf committed
1292
1293
1294
1295
                        if self.config.torchscript:
                            self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone())
                        else:
                            self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
thomwolf's avatar
thomwolf committed
1296
                    elif tie_proj and self.config.div_val != 1:
thomwolf's avatar
thomwolf committed
1297
1298
1299
1300
                        if self.config.torchscript:
                            self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone())
                        else:
                            self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
thomwolf's avatar
thomwolf committed
1301
1302
1303
1304
1305
1306
1307

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.transformer.reset_length(tgt_len, ext_len, mem_len)

    def init_mems(self, data):
        return self.transformer.init_mems(data)

thomwolf's avatar
thomwolf committed
1308
    def forward(self, input_ids, labels=None, mems=None, head_mask=None):
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
        """
        Performs a model forward pass. **Can be called by calling the class directly, once it has been instantiated.**

        Args:
            `input_ids`: a ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with the token indices selected in the range [0, self.config.n_token[
            `labels`: an optional ``torch.LongTensor`` of shape [batch_size, sequence_length]
                with the labels token indices selected in the range [0, self.config.n_token[
            `mems`: an optional memory of hidden states from previous forward passes
                as a list (num layers) of hidden states at the entry of each layer
                each hidden states has shape [self.config.mem_len, bsz, self.config.d_model]
                Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`

        Returns:
            A tuple of (last_hidden_state, new_mems)

                ``last_hidden_state``: output of the (adaptive) softmax. If ``labels`` is ``None``, it is the negative
                log likelihood of shape [batch_size, sequence_length]. Otherwise, it is the log probabilities of
                tokens of, shape [batch_size, sequence_length, n_tokens].

                ``new_mems``: list (num layers) of updated mem states at the entry of each layer
                each mem state is a ``torch.FloatTensor`` of size [self.config.mem_len, batch_size, self.config.d_model]
                Note that the first two dimensions are transposed in ``mems`` with regards to ``input_ids`` and
                ``labels``

        Example::

            # Already been converted into BPE token ids
            input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
            input_ids_next = torch.LongTensor([[53, 21, 1], [64, 23, 100]])

            last_hidden_state, new_mems = model(input_ids)
            # or
            last_hidden_state, new_mems = model.forward(input_ids)

            # Another time on input_ids_next using the memory:
            last_hidden_state, new_mems = model(input_ids_next, mems=new_mems)
thomwolf's avatar
thomwolf committed
1346
        """
1347
1348
        bsz = input_ids.size(0)
        tgt_len = input_ids.size(1)
thomwolf's avatar
thomwolf committed
1349

thomwolf's avatar
thomwolf committed
1350
        transformer_outputs = self.transformer(input_ids, mems, head_mask)
thomwolf's avatar
thomwolf committed
1351

thomwolf's avatar
thomwolf committed
1352
        last_hidden = transformer_outputs[0]
1353
        pred_hid = last_hidden[:, -tgt_len:]
thomwolf's avatar
thomwolf committed
1354
        outputs = transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
1355
        if self.sample_softmax > 0 and self.training:
thomwolf's avatar
thomwolf committed
1356
            assert self.config.tie_weight
thomwolf's avatar
thomwolf committed
1357
            logit = sample_logits(self.transformer.word_emb, self.out_layer.bias, labels, pred_hid, self.sampler)
1358
            softmax_output = -F.log_softmax(logit, -1)[:, :, 0]
thomwolf's avatar
thomwolf committed
1359
1360
1361
1362
            outputs = [softmax_output] + outputs
            if labels is not None:
                # TODO: This is not implemented
                raise NotImplementedError
thomwolf's avatar
thomwolf committed
1363
        else:
thomwolf's avatar
thomwolf committed
1364
1365
            softmax_output = self.crit(pred_hid.view(-1, pred_hid.size(-1)), labels)
            if labels is None:
1366
                softmax_output = softmax_output.view(bsz, tgt_len, -1)
thomwolf's avatar
thomwolf committed
1367
                outputs = [softmax_output] + outputs
thomwolf's avatar
thomwolf committed
1368
            else:
1369
                softmax_output = softmax_output.view(bsz, tgt_len)
thomwolf's avatar
thomwolf committed
1370
                outputs = [softmax_output, None] + outputs
thomwolf's avatar
thomwolf committed
1371

thomwolf's avatar
thomwolf committed
1372
        return outputs  # (loss), logits or None if labels is not None (speed up adaptive softmax), new_mems, (all hidden states), (all attentions)