test_processor_wav2vec2_with_lm.py 9.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import Pool
21
from pathlib import Path
22
23
24
25
26
27
28
29
30
31
32
33
34

import numpy as np

from transformers.file_utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available
from transformers.models.wav2vec2 import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor
from transformers.models.wav2vec2.tokenization_wav2vec2 import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode

from .test_feature_extraction_wav2vec2 import floats_list


if is_pyctcdecode_available():
    from pyctcdecode import BeamSearchDecoderCTC
35
    from transformers.models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237


@require_pyctcdecode
class Wav2Vec2ProcessorWithLMTest(unittest.TestCase):
    def setUp(self):
        vocab = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split()
        vocab_tokens = dict(zip(vocab, range(len(vocab))))

        self.add_kwargs_tokens_map = {
            "unk_token": "<unk>",
            "bos_token": "<s>",
            "eos_token": "</s>",
        }
        feature_extractor_map = {
            "feature_size": 1,
            "padding_value": 0.0,
            "sampling_rate": 16000,
            "return_attention_mask": False,
            "do_normalize": True,
        }

        self.tmpdirname = tempfile.mkdtemp()
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")

        with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(feature_extractor_map) + "\n")

        # load decoder from hub
        self.decoder_name = "hf-internal-testing/ngram-beam-search-decoder"

    def get_tokenizer(self, **kwargs_init):
        kwargs = self.add_kwargs_tokens_map.copy()
        kwargs.update(kwargs_init)
        return Wav2Vec2CTCTokenizer.from_pretrained(self.tmpdirname, **kwargs)

    def get_feature_extractor(self, **kwargs):
        return Wav2Vec2FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)

    def get_decoder(self, **kwargs):
        return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **kwargs)

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()
        decoder = self.get_decoder()

        processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder)

        processor.save_pretrained(self.tmpdirname)
        processor = Wav2Vec2ProcessorWithLM.from_pretrained(self.tmpdirname)

        # tokenizer
        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer, Wav2Vec2CTCTokenizer)

        # feature extractor
        self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, Wav2Vec2FeatureExtractor)

        # decoder
        self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels)
        self.assertEqual(
            processor.decoder.model_container[decoder._model_key]._unigram_set,
            decoder.model_container[decoder._model_key]._unigram_set,
        )
        self.assertIsInstance(processor.decoder, BeamSearchDecoderCTC)

    def test_save_load_pretrained_additional_features(self):
        processor = Wav2Vec2ProcessorWithLM(
            tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder()
        )
        processor.save_pretrained(self.tmpdirname)

        # make sure that error is thrown when decoder alphabet doesn't match
        processor = Wav2Vec2ProcessorWithLM.from_pretrained(
            self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3
        )

        # decoder
        self.assertEqual(processor.language_model.alpha, 5.0)
        self.assertEqual(processor.language_model.beta, 3.0)
        self.assertEqual(processor.language_model.score_boundary, -7.0)
        self.assertEqual(processor.language_model.unk_score_offset, 3)

    def test_load_decoder_tokenizer_mismatch_content(self):
        tokenizer = self.get_tokenizer()
        # add token to trigger raise
        tokenizer.add_tokens(["xx"])
        with self.assertRaisesRegex(ValueError, "include"):
            Wav2Vec2ProcessorWithLM(
                tokenizer=tokenizer, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder()
            )

    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()
        decoder = self.get_decoder()

        processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder)

        raw_speech = floats_list((3, 1000))

        input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
        input_processor = processor(raw_speech, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()
        decoder = self.get_decoder()

        processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder)

        input_str = "This is a test string"

        with processor.as_target_processor():
            encoded_processor = processor(input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def _get_dummy_logits(self, shape=(2, 10, 16), seed=77):
        np.random.seed(seed)
        return np.random.rand(*shape)

    def test_decoder(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()
        decoder = self.get_decoder()

        processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder)

        logits = self._get_dummy_logits(shape=(10, 16), seed=13)

        decoded_processor = processor.decode(logits).text

        decoded_decoder = decoder.decode_beams(logits)[0][0]

        self.assertEqual(decoded_decoder, decoded_processor)
        self.assertEqual("</s> <s> </s>", decoded_processor)

    def test_decoder_batch(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()
        decoder = self.get_decoder()

        processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder)

        logits = self._get_dummy_logits()

        decoded_processor = processor.batch_decode(logits).text

        logits_list = [array for array in logits]
        decoded_decoder = [d[0][0] for d in decoder.decode_beams_batch(Pool(), logits_list)]

        self.assertListEqual(decoded_decoder, decoded_processor)
        self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"], decoded_processor)

    def test_decoder_with_params(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()
        decoder = self.get_decoder()

        processor = Wav2Vec2ProcessorWithLM(tokenizer=tokenizer, feature_extractor=feature_extractor, decoder=decoder)

        logits = self._get_dummy_logits()

        beam_width = 20
        beam_prune_logp = -20.0
        token_min_logp = -4.0

        decoded_processor_out = processor.batch_decode(
            logits,
            beam_width=beam_width,
            beam_prune_logp=beam_prune_logp,
            token_min_logp=token_min_logp,
        )
        decoded_processor = decoded_processor_out.text

        logits_list = [array for array in logits]
        decoded_decoder_out = decoder.decode_beams_batch(
            Pool(),
            logits_list,
            beam_width=beam_width,
            beam_prune_logp=beam_prune_logp,
            token_min_logp=token_min_logp,
        )

        decoded_decoder = [d[0][0] for d in decoded_decoder_out]

        self.assertListEqual(decoded_decoder, decoded_processor)
        self.assertListEqual(["<s> </s> </s>", "<s> <s> </s>"], decoded_processor)
238
239
240
241
242
243
244
245
246
247
248
249
250

    def test_decoder_download_ignores_files(self):
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm")

        language_model = processor.decoder.model_container[processor.decoder._model_key]
        path_to_cached_dir = Path(language_model._kenlm_model.path.decode("utf-8")).parent.parent.absolute()

        downloaded_decoder_files = os.listdir(path_to_cached_dir)

        # test that only decoder relevant files from
        # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
        # are downloaded and none of the rest (e.g. README.md, ...)
        self.assertListEqual(downloaded_decoder_files, ["alphabet.json", "language_model"])