modeling_tf_outputs.py 32.4 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from dataclasses import dataclass
from typing import List, Optional, Tuple

import tensorflow as tf

from .file_utils import ModelOutput


@dataclass
class TFBaseModelOutput(ModelOutput):
    """
    Base class for model's outputs, with potential hidden states and attentions.

    Args:
        last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (:obj:`tuple(tf.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    last_hidden_state: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFBaseModelOutputWithPooling(ModelOutput):
    """
    Base class for model's outputs that also contains a pooling of the last hidden states.

    Args:
        last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token) further processed by a
            Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence
            prediction (classification) objective during pretraining.

            This output is usually *not* a good summary of the semantic content of the input, you're often better with
            averaging or pooling the sequence of hidden-states for the whole input sequence.
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    last_hidden_state: tf.Tensor = None
    pooler_output: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFBaseModelOutputWithPast(ModelOutput):
    """
    Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).

    Args:
        last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.

            If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size,
            1, hidden_size)` is output.
        past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
            List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
            :obj:`past_key_values` input) to speed up sequential decoding.
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    last_hidden_state: tf.Tensor = None
    past_key_values: Optional[List[tf.Tensor]] = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFSeq2SeqModelOutput(ModelOutput):
    """
    Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
    decoding.

    Args:
        last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.

            If :obj:`past_key_values` is used only the last hidden-state of the sequences of shape :obj:`(batch_size,
            1, hidden_size)` is output.
        past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
            List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see :obj:`past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
    """

    last_hidden_state: tf.Tensor = None
    past_key_values: Optional[List[tf.Tensor]] = None
    decoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_last_hidden_state: Optional[tf.Tensor] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFCausalLMOutput(ModelOutput):
    """
    Base class for causal language model (or autoregressive) outputs.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[tf.Tensor] = None
    logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFCausalLMOutputWithPast(ModelOutput):
    """
    Base class for causal language model (or autoregressive) outputs.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
            List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
            :obj:`past_key_values` input) to speed up sequential decoding.
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[tf.Tensor] = None
    logits: tf.Tensor = None
    past_key_values: Optional[List[tf.Tensor]] = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFMaskedLMOutput(ModelOutput):
    """
    Base class for masked language models outputs.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
230
            Masked language modeling (MLM) loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[tf.Tensor] = None
    logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFSeq2SeqLMOutput(ModelOutput):
    """
    Base class for sequence-to-sequence language models outputs.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
259
            Language modeling loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
            List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see :obj:`past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
    """

    loss: Optional[tf.Tensor] = None
    logits: tf.Tensor = None
    past_key_values: Optional[List[tf.Tensor]] = None
    decoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_last_hidden_state: Optional[tf.Tensor] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFNextSentencePredictorOutput(ModelOutput):
    """
    Base class for outputs of models predicting if two sentences are consecutive or not.

    Args:
310
311
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided):
            Next sentence prediction loss.
Sylvain Gugger's avatar
Sylvain Gugger committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, 2)`):
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
            before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

Julien Plu's avatar
Julien Plu committed
328
    loss: Optional[tf.Tensor] = None
Sylvain Gugger's avatar
Sylvain Gugger committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
    logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFSequenceClassifierOutput(ModelOutput):
    """
    Base class for outputs of sentence classification models.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[tf.Tensor] = None
    logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFSeq2SeqSequenceClassifierOutput(ModelOutput):
    """
    Base class for outputs of sequence-to-sequence sentence classification models.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
            List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see :obj:`past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
    """

    loss: Optional[tf.Tensor] = None
    logits: tf.Tensor = None
    past_key_values: Optional[List[tf.Tensor]] = None
    decoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_last_hidden_state: Optional[tf.Tensor] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFMultipleChoiceModelOutput(ModelOutput):
    """
    Base class for outputs of multiple choice models.

    Args:
        loss (:obj:`tf.Tensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
            Classification loss.
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices)`):
            `num_choices` is the second dimension of the input tensors. (see `input_ids` above).

            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[tf.Tensor] = None
    logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFTokenClassifierOutput(ModelOutput):
    """
    Base class for outputs of token classification models.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
            Classification loss.
        logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`):
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[tf.Tensor] = None
    logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFQuestionAnsweringModelOutput(ModelOutput):
    """
    Base class for outputs of question answering models.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
            Span-start scores (before SoftMax).
        end_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
            Span-end scores (before SoftMax).
        hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: Optional[tf.Tensor] = None
    start_logits: tf.Tensor = None
    end_logits: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


@dataclass
class TFSeq2SeqQuestionAnsweringModelOutput(ModelOutput):
    """
    Base class for outputs of sequence-to-sequence question answering models.

    Args:
        loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
            Span-start scores (before SoftMax).
        end_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
            Span-end scores (before SoftMax).
        past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
            List of :obj:`tf.Tensor` of length :obj:`config.n_layers`, with each tensor of shape :obj:`(2, batch_size,
            num_heads, sequence_length, embed_size_per_head)`).

            Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
            used (see :obj:`past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        encoder_last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of
            shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
    """

    loss: Optional[tf.Tensor] = None
    start_logits: tf.Tensor = None
    end_logits: tf.Tensor = None
    past_key_values: Optional[List[tf.Tensor]] = None
    decoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    decoder_attentions: Optional[Tuple[tf.Tensor]] = None
    encoder_last_hidden_state: Optional[tf.Tensor] = None
    encoder_hidden_states: Optional[Tuple[tf.Tensor]] = None
    encoder_attentions: Optional[Tuple[tf.Tensor]] = None