"test/config/naive_test/naive_assessor.py" did not exist on "8d866b5b9dbf7d9b2ed4ea85f9133ccf1fec62bc"
test_modeling_clip.py 28.7 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch CLIP model. """


import inspect
import os
import tempfile
import unittest

23
import numpy as np
Suraj Patil's avatar
Suraj Patil committed
24
import requests
25

26
import transformers
27
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
28
29
30
31
32
33
34
35
from transformers.testing_utils import (
    is_flax_available,
    is_pt_flax_cross_test,
    require_torch,
    require_vision,
    slow,
    torch_device,
)
36
from transformers.utils import is_torch_available, is_vision_available
Suraj Patil's avatar
Suraj Patil committed
37

Yih-Dar's avatar
Yih-Dar committed
38
39
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
40
41
42
43
44
45
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
46
from ...test_pipeline_mixin import PipelineTesterMixin
Suraj Patil's avatar
Suraj Patil committed
47
48
49
50


if is_torch_available():
    import torch
51
    from torch import nn
Suraj Patil's avatar
Suraj Patil committed
52

53
54
55
56
57
58
59
    from transformers import (
        CLIPModel,
        CLIPTextModel,
        CLIPTextModelWithProjection,
        CLIPVisionModel,
        CLIPVisionModelWithProjection,
    )
Suraj Patil's avatar
Suraj Patil committed
60
61
62
63
64
65
66
67
68
    from transformers.models.clip.modeling_clip import CLIP_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

    from transformers import CLIPProcessor


69
70
if is_flax_available():
    import jax.numpy as jnp
71

72
73
74
75
76
77
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )


Suraj Patil's avatar
Suraj Patil committed
78
79
80
81
82
83
84
85
86
87
class CLIPVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        hidden_size=32,
88
        projection_dim=32,
Suraj Patil's avatar
Suraj Patil committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
104
        self.projection_dim = projection_dim
Suraj Patil's avatar
Suraj Patil committed
105
106
107
108
109
110
111
112
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

NielsRogge's avatar
NielsRogge committed
113
114
115
116
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

Suraj Patil's avatar
Suraj Patil committed
117
118
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
119
120
121
122
123
124
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return CLIPVisionConfig(
Suraj Patil's avatar
Suraj Patil committed
125
126
127
128
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
129
            projection_dim=self.projection_dim,
Suraj Patil's avatar
Suraj Patil committed
130
131
132
133
134
135
136
137
138
139
140
141
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values):
        model = CLIPVisionModel(config=config)
        model.to(torch_device)
        model.eval()
Suraj Patil's avatar
Suraj Patil committed
142
143
        with torch.no_grad():
            result = model(pixel_values)
Suraj Patil's avatar
Suraj Patil committed
144
145
146
147
148
149
150
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

151
152
153
154
155
156
157
158
159
160
161
162
163
    def create_and_check_model_with_projection(self, config, pixel_values):
        model = CLIPVisionModelWithProjection(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
        self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim))

Suraj Patil's avatar
Suraj Patil committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class CLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

178
    all_model_classes = (CLIPVisionModel, CLIPVisionModelWithProjection) if is_torch_available() else ()
179
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
180
181
182
183
184
185
186
187
188
189
190
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = CLIPVisionModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CLIPVisionConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
191
    @unittest.skip(reason="CLIP does not use inputs_embeds")
Suraj Patil's avatar
Suraj Patil committed
192
193
194
195
196
197
198
199
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
200
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
Suraj Patil's avatar
Suraj Patil committed
201
            x = model.get_output_embeddings()
202
            self.assertTrue(x is None or isinstance(x, nn.Linear))
Suraj Patil's avatar
Suraj Patil committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

220
221
222
223
    def test_model_with_projection(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_projection(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
224
225
226
227
228
229
    def test_training(self):
        pass

    def test_training_gradient_checkpointing(self):
        pass

230
231
232
233
234
235
    @unittest.skip(
        reason="The model does not support GC + autocast + fp16: https://github.com/huggingface/transformers/pull/24247"
    )
    def test_training_gradient_checkpointing_autocast(self):
        pass

NielsRogge's avatar
NielsRogge committed
236
    @unittest.skip(reason="CLIPVisionModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
237
238
239
    def test_save_load_fast_init_from_base(self):
        pass

NielsRogge's avatar
NielsRogge committed
240
    @unittest.skip(reason="CLIPVisionModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
241
242
243
244
245
246
247
248
249
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CLIPVisionModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

250
251
252
253
254
255
256
    @slow
    def test_model_with_projection_from_pretrained(self):
        for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CLIPVisionModelWithProjection.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertTrue(hasattr(model, "visual_projection"))

Suraj Patil's avatar
Suraj Patil committed
257
258
259
260
261
262
263
264
265
266
267
268

class CLIPTextModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
269
        projection_dim=32,
Suraj Patil's avatar
Suraj Patil committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
287
        self.projection_dim = projection_dim
Suraj Patil's avatar
Suraj Patil committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

304
305
306
307
308
309
310
        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

311
312
313
314
315
316
        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return CLIPTextConfig(
Suraj Patil's avatar
Suraj Patil committed
317
318
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
319
            projection_dim=self.projection_dim,
Suraj Patil's avatar
Suraj Patil committed
320
321
322
323
324
325
326
327
328
329
330
331
332
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask):
        model = CLIPTextModel(config=config)
        model.to(torch_device)
        model.eval()
Suraj Patil's avatar
Suraj Patil committed
333
334
335
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
Suraj Patil's avatar
Suraj Patil committed
336
337
338
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

339
340
341
342
343
344
345
346
347
348
    def create_and_check_model_with_projection(self, config, input_ids, input_mask):
        model = CLIPTextModelWithProjection(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim))

Suraj Patil's avatar
Suraj Patil committed
349
350
351
352
353
354
355
356
357
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class CLIPTextModelTest(ModelTesterMixin, unittest.TestCase):
358
    all_model_classes = (CLIPTextModel, CLIPTextModelWithProjection) if is_torch_available() else ()
359
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    test_pruning = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = CLIPTextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CLIPTextConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

374
375
376
377
    def test_model_with_projection(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_projection(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
378
379
380
381
382
383
    def test_training(self):
        pass

    def test_training_gradient_checkpointing(self):
        pass

NielsRogge's avatar
NielsRogge committed
384
    @unittest.skip(reason="CLIP does not use inputs_embeds")
Suraj Patil's avatar
Suraj Patil committed
385
386
387
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
388
    @unittest.skip(reason="CLIPTextModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
389
390
391
    def test_save_load_fast_init_from_base(self):
        pass

NielsRogge's avatar
NielsRogge committed
392
    @unittest.skip(reason="CLIPTextModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
393
394
395
396
397
398
399
400
401
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CLIPTextModel.from_pretrained(model_name)
            self.assertIsNotNone(model)

402
403
404
405
406
407
408
    @slow
    def test_model_with_projection_from_pretrained(self):
        for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CLIPTextModelWithProjection.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertTrue(hasattr(model, "text_projection"))

Suraj Patil's avatar
Suraj Patil committed
409
410

class CLIPModelTester:
411
412
413
414
415
416
    def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
        if text_kwargs is None:
            text_kwargs = {}
        if vision_kwargs is None:
            vision_kwargs = {}

Suraj Patil's avatar
Suraj Patil committed
417
        self.parent = parent
418
419
        self.text_model_tester = CLIPTextModelTester(parent, **text_kwargs)
        self.vision_model_tester = CLIPVisionModelTester(parent, **vision_kwargs)
Suraj Patil's avatar
Suraj Patil committed
420
421
422
423
424
425
        self.is_training = is_training

    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()

426
        config = self.get_config()
Suraj Patil's avatar
Suraj Patil committed
427
428
429

        return config, input_ids, attention_mask, pixel_values

430
431
432
433
434
    def get_config(self):
        return CLIPConfig.from_text_vision_configs(
            self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
        )

Suraj Patil's avatar
Suraj Patil committed
435
436
    def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
        model = CLIPModel(config).to(torch_device).eval()
Suraj Patil's avatar
Suraj Patil committed
437
438
        with torch.no_grad():
            result = model(input_ids, pixel_values, attention_mask)
Suraj Patil's avatar
Suraj Patil committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        self.parent.assertEqual(
            result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
        )
        self.parent.assertEqual(
            result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "return_loss": True,
        }
        return config, inputs_dict


@require_torch
459
class CLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
460
    all_model_classes = (CLIPModel,) if is_torch_available() else ()
461
    pipeline_model_mapping = {"feature-extraction": CLIPModel} if is_torch_available() else {}
462
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
463
464
465
466
467
468
469
470
471
472
473
474
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    def setUp(self):
        self.model_tester = CLIPModelTester(self)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
475
    @unittest.skip(reason="Hidden_states is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
476
477
478
    def test_hidden_states_output(self):
        pass

NielsRogge's avatar
NielsRogge committed
479
    @unittest.skip(reason="Inputs_embeds is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
480
481
482
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
483
    @unittest.skip(reason="Retain_grad is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
484
485
486
    def test_retain_grad_hidden_states_attentions(self):
        pass

NielsRogge's avatar
NielsRogge committed
487
    @unittest.skip(reason="CLIPModel does not have input/output embeddings")
Suraj Patil's avatar
Suraj Patil committed
488
489
490
    def test_model_common_attributes(self):
        pass

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    # override as the `logit_scale` parameter initilization is different for CLIP
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    # check if `logit_scale` is initilized as per the original implementation
                    if name == "logit_scale":
                        self.assertAlmostEqual(
                            param.data.item(),
                            np.log(1 / 0.07),
                            delta=1e-3,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

Suraj Patil's avatar
Suraj Patil committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()

            try:
                input_ids = inputs_dict["input_ids"]
                pixel_values = inputs_dict["pixel_values"]  # CLIP needs pixel_values
                traced_model = torch.jit.trace(model, (input_ids, pixel_values))
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    def test_load_vision_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Save CLIPConfig and check if we can load CLIPVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = CLIPVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())

        # Save CLIPConfig and check if we can load CLIPTextConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            text_config = CLIPTextConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    # overwrite from common since FlaxCLIPModel returns nested output
    # which is not supported in the common test
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}
                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)

    # overwrite from common since FlaxCLIPModel returns nested output
    # which is not supported in the common test
    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load corresponding PyTorch class
                pt_model = model_class(config).eval()

                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")

                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

Suraj Patil's avatar
Suraj Patil committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    @slow
    def test_model_from_pretrained(self):
        for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = CLIPModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    im = Image.open(requests.get(url, stream=True).raw)
    return im


@require_vision
714
@require_torch
Suraj Patil's avatar
Suraj Patil committed
715
716
717
718
719
720
721
722
723
724
725
726
727
class CLIPModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPModel.from_pretrained(model_name).to(torch_device)
        processor = CLIPProcessor.from_pretrained(model_name)

        image = prepare_img()
        inputs = processor(
            text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt"
        ).to(torch_device)

        # forward pass
728
729
        with torch.no_grad():
            outputs = model(**inputs)
Suraj Patil's avatar
Suraj Patil committed
730
731
732
733
734
735
736
737
738
739
740

        # verify the logits
        self.assertEqual(
            outputs.logits_per_image.shape,
            torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
        )
        self.assertEqual(
            outputs.logits_per_text.shape,
            torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
        )

741
        expected_logits = torch.tensor([[24.5701, 19.3049]], device=torch_device)
Suraj Patil's avatar
Suraj Patil committed
742
743

        self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))