test_modeling_beit.py 19 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BEiT model. """


import inspect
import unittest

21
from datasets import load_dataset
22
from packaging import version
23

NielsRogge's avatar
NielsRogge committed
24
25
from transformers import BeitConfig
from transformers.models.auto import get_values
26
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
27
from transformers.utils import cached_property, is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
28

Yih-Dar's avatar
Yih-Dar committed
29
30
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
31
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
32
33
34
35
36
37


if is_torch_available():
    import torch
    from torch import nn

38
39
40
41
42
43
44
    from transformers import (
        MODEL_MAPPING,
        BeitForImageClassification,
        BeitForMaskedImageModeling,
        BeitForSemanticSegmentation,
        BeitModel,
    )
45
    from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
NielsRogge's avatar
NielsRogge committed
46
47
48


if is_vision_available():
49
    import PIL
NielsRogge's avatar
NielsRogge committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    from PIL import Image

    from transformers import BeitFeatureExtractor


class BeitModelTester:
    def __init__(
        self,
        parent,
        vocab_size=100,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
67
        num_hidden_layers=4,
NielsRogge's avatar
NielsRogge committed
68
69
70
71
72
73
74
75
76
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
77
        out_indices=[0, 1, 2, 3],
NielsRogge's avatar
NielsRogge committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    ):
        self.parent = parent
        self.vocab_size = 100
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope
97
        self.out_indices = out_indices
98
        self.num_labels = num_labels
NielsRogge's avatar
NielsRogge committed
99

NielsRogge's avatar
NielsRogge committed
100
        # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
101
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
102
        self.seq_length = num_patches + 1
103

NielsRogge's avatar
NielsRogge committed
104
105
106
107
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
108
        pixel_labels = None
NielsRogge's avatar
NielsRogge committed
109
110
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
111
            pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
NielsRogge's avatar
NielsRogge committed
112
113
114

        config = self.get_config()

115
        return config, pixel_values, labels, pixel_labels
NielsRogge's avatar
NielsRogge committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    def get_config(self):
        return BeitConfig(
            vocab_size=self.vocab_size,
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
132
            out_indices=self.out_indices,
NielsRogge's avatar
NielsRogge committed
133
134
        )

135
    def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
136
137
138
139
        model = BeitModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
140
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
141

142
    def create_and_check_for_masked_lm(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
143
144
145
146
        model = BeitForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
147
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size))
NielsRogge's avatar
NielsRogge committed
148

149
    def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
NielsRogge's avatar
NielsRogge committed
150
151
152
153
154
155
156
        config.num_labels = self.type_sequence_label_size
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
157
158
159
160
161
162
163
164
165
166
        # test greyscale images
        config.num_channels = 1
        model = BeitForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
167
    def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
168
169
170
171
172
173
        config.num_labels = self.num_labels
        model = BeitForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
174
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
175
176
177
        )
        result = model(pixel_values, labels=pixel_labels)
        self.parent.assertEqual(
178
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
179
180
        )

NielsRogge's avatar
NielsRogge committed
181
182
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
183
        config, pixel_values, labels, pixel_labels = config_and_inputs
NielsRogge's avatar
NielsRogge committed
184
185
186
187
188
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
189
class BeitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
190
191
192
193
194
195
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as BEiT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (
196
197
198
        (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
        if is_torch_available()
        else ()
NielsRogge's avatar
NielsRogge committed
199
    )
200
201
202
203
204
205
206
207
208
    pipeline_model_mapping = (
        {
            "feature-extraction": BeitModel,
            "image-classification": BeitForImageClassification,
            "image-segmentation": BeitForSemanticSegmentation,
        }
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
209
210
211
212
213
214
215
216
217
218
219
220

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = BeitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
221
    @unittest.skip(reason="BEiT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
222
223
224
    def test_inputs_embeds(self):
        pass

225
226
227
228
229
    @require_torch_multi_gpu
    @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`")
    def test_multi_gpu_data_parallel_forward(self):
        pass

230
231
232
233
234
235
    @unittest.skip(
        reason="The model does not support GC + autocast + fp16: https://github.com/huggingface/transformers/pull/24247"
    )
    def test_training_gradient_checkpointing_autocast(self):
        pass

NielsRogge's avatar
NielsRogge committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
261
262
263
264
265
266
267
268
269
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    def test_for_semantic_segmentation(self):
270
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
NielsRogge's avatar
NielsRogge committed
271
        self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
272

NielsRogge's avatar
NielsRogge committed
273
274
275
276
277
278
279
280
281
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
282
            if model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]:
283
                continue
284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training:
            return

        config.use_cache = False
        config.return_dict = True

        for model_class in self.all_model_classes:
            # we don't test BeitForMaskedImageModeling
302
303
304
305
            if (
                model_class in [*get_values(MODEL_MAPPING), BeitForMaskedImageModeling]
                or not model_class.supports_gradient_checkpointing
            ):
NielsRogge's avatar
NielsRogge committed
306
                continue
NielsRogge's avatar
NielsRogge committed
307

NielsRogge's avatar
NielsRogge committed
308
            model = model_class(config)
309
            model.gradient_checkpointing_enable()
NielsRogge's avatar
NielsRogge committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                # we skip lambda parameters as these require special initial values
                # determined by config.layer_scale_init_value
                if "lambda" in name:
                    continue
                if param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

    @slow
    def test_model_from_pretrained(self):
        for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = BeitModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


347
@require_torch
NielsRogge's avatar
NielsRogge committed
348
349
350
351
352
353
354
355
@require_vision
class BeitModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return (
            BeitFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None
        )

356
357
358
359
360
361
362
363
364
365
366
367
    @slow
    def test_inference_masked_image_modeling_head(self):
        model = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(torch_device)

        # prepare bool_masked_pos
        bool_masked_pos = torch.ones((1, 196), dtype=torch.bool).to(torch_device)

        # forward pass
368
369
        with torch.no_grad():
            outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos)
370
371
372
373
374
375
376
377
378
379
380
381
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 196, 8192))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2))

NielsRogge's avatar
NielsRogge committed
382
383
384
385
386
387
388
389
390
    @slow
    def test_inference_image_classification_head_imagenet_1k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224").to(torch_device)

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
391
392
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([-1.2385, -1.0987, -1.0108]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 281
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)

    @slow
    def test_inference_image_classification_head_imagenet_22k(self):
        model = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k").to(
            torch_device
        )

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
417
418
        with torch.no_grad():
            outputs = model(**inputs)
NielsRogge's avatar
NielsRogge committed
419
420
421
422
423
424
425
426
427
428
429
430
        logits = outputs.logits

        # verify the logits
        expected_shape = torch.Size((1, 21841))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor([1.6881, -0.2787, 0.5901]).to(torch_device)

        self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))

        expected_class_idx = 2396
        self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
431
432
433
434
435
436
437
438
439
440
441
442
443

    @slow
    def test_inference_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

        feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False)

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
444
445
        with torch.no_grad():
            outputs = model(**inputs)
446
447
448
        logits = outputs.logits

        # verify the logits
449
        expected_shape = torch.Size((1, 150, 160, 160))
450
451
        self.assertEqual(logits.shape, expected_shape)

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
        is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0")

        if is_pillow_less_than_9:
            expected_slice = torch.tensor(
                [
                    [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
                    [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
                    [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
                ],
                device=torch_device,
            )
        else:
            expected_slice = torch.tensor(
                [
                    [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
                    [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
                    [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
                ],
                device=torch_device,
            )
472
473

        self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

    @slow
    def test_post_processing_semantic_segmentation(self):
        model = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640")
        model = model.to(torch_device)

        feature_extractor = BeitFeatureExtractor(do_resize=True, size=640, do_center_crop=False)

        ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
        image = Image.open(ds[0]["file"])
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        outputs.logits = outputs.logits.detach().cpu()

        segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
        expected_shape = torch.Size((500, 300))
        self.assertEqual(segmentation[0].shape, expected_shape)

        segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs)
        expected_shape = torch.Size((160, 160))
        self.assertEqual(segmentation[0].shape, expected_shape)