test_modeling_fsmt.py 23.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import timeout_decorator  # noqa
from parameterized import parameterized
21

22
from transformers import FSMTConfig, is_torch_available
23
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
24
from transformers.utils import cached_property
25

26
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
27
28
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
29
from ...test_pipeline_mixin import PipelineTesterMixin
30
31
32
33


if is_torch_available():
    import torch
34
    from torch import nn
35

36
    from transformers import FSMTForConditionalGeneration, FSMTModel, FSMTTokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
37
    from transformers.models.fsmt.modeling_fsmt import (
38
39
40
41
42
        SinusoidalPositionalEmbedding,
        _prepare_fsmt_decoder_inputs,
        invert_mask,
        shift_tokens_right,
    )
43
    from transformers.pipelines import TranslationPipeline
44
45


46
class FSMTModelTester:
47
48
49
    def __init__(
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        src_vocab_size=99,
        tgt_vocab_size=99,
        langs=["ru", "en"],
        batch_size=13,
        seq_length=7,
        is_training=False,
        use_labels=False,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="relu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        bos_token_id=0,
        pad_token_id=1,
        eos_token_id=2,
68
69
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        self.src_vocab_size = src_vocab_size
        self.tgt_vocab_size = tgt_vocab_size
        self.langs = langs
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.bos_token_id = bos_token_id
        self.pad_token_id = pad_token_id
        self.eos_token_id = eos_token_id
88
89
90
91
92
        torch.manual_seed(0)

        # hack needed for modeling_common tests - despite not really having this attribute in this model
        self.vocab_size = self.src_vocab_size

93
    def prepare_config_and_inputs(self):
94
95
96
97
98
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.src_vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = 2  # Eos Token

99
100
101
102
103
104
        config = self.get_config()
        inputs_dict = prepare_fsmt_inputs_dict(config, input_ids)
        return config, inputs_dict

    def get_config(self):
        return FSMTConfig(
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
            vocab_size=self.src_vocab_size,  # hack needed for common tests
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
        )

124
125
126
127
128
129
130
    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"]
        inputs_dict["decoder_attention_mask"] = inputs_dict["attention_mask"]
        inputs_dict["use_cache"] = False
        return config, inputs_dict

131
132
133
134
135

def prepare_fsmt_inputs_dict(
    config,
    input_ids,
    attention_mask=None,
136
137
    head_mask=None,
    decoder_head_mask=None,
138
    cross_attn_head_mask=None,
139
140
141
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
142
143
144
145
    if head_mask is None:
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
    if decoder_head_mask is None:
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
146
147
    if cross_attn_head_mask is None:
        cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
148
149
150
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
151
152
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
153
154
155
156
    }


@require_torch
157
class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
158
159
    all_model_classes = (FSMTModel, FSMTForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (FSMTForConditionalGeneration,) if is_torch_available() else ()
160
161
162
163
164
165
    pipeline_model_mapping = (
        {
            "conversational": FSMTForConditionalGeneration,
            "feature-extraction": FSMTModel,
            "summarization": FSMTForConditionalGeneration,
            "text2text-generation": FSMTForConditionalGeneration,
Yih-Dar's avatar
Yih-Dar committed
166
            "translation": FSMTForConditionalGeneration,
167
168
169
170
        }
        if is_torch_available()
        else {}
    )
171
172
    is_encoder_decoder = True
    test_pruning = False
173
    test_missing_keys = False
174
175

    def setUp(self):
176
        self.model_tester = FSMTModelTester(self)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        self.langs = ["en", "ru"]
        config = {
            "langs": self.langs,
            "src_vocab_size": 10,
            "tgt_vocab_size": 20,
        }
        # XXX: hack to appease to all other models requiring `vocab_size`
        config["vocab_size"] = 99  # no such thing in FSMT
        self.config_tester = ConfigTester(self, config_class=FSMTConfig, **config)

    def test_config(self):
        self.config_tester.run_common_tests()

    # XXX: override test_model_common_attributes / different Embedding type
    def test_model_common_attributes(self):
192
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
193
194
195

        for model_class in self.all_model_classes:
            model = model_class(config)
196
197
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
198
            x = model.get_output_embeddings()
199
            self.assertTrue(x is None or isinstance(x, nn.modules.sparse.Embedding))
200
201

    def test_initialization_more(self):
202
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        model = FSMTModel(config)
        model.to(torch_device)
        model.eval()
        # test init
        # self.assertTrue((model.encoder.embed_tokens.weight == model.shared.weight).all().item())

        def _check_var(module):
            """Check that we initialized various parameters from N(0, config.init_std)."""
            self.assertAlmostEqual(torch.std(module.weight).item(), config.init_std, 2)

        _check_var(model.encoder.embed_tokens)
        _check_var(model.encoder.layers[0].self_attn.k_proj)
        _check_var(model.encoder.layers[0].fc1)
        # XXX: different std for fairseq version of SinusoidalPositionalEmbedding
        # self.assertAlmostEqual(torch.std(model.encoder.embed_positions.weights).item(), config.init_std, 2)

    def test_advanced_inputs(self):
220
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        config.use_cache = False
        inputs_dict["input_ids"][:, -2:] = config.pad_token_id
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
            config, inputs_dict["input_ids"]
        )
        model = FSMTModel(config).to(torch_device).eval()

        decoder_features_with_created_mask = model(**inputs_dict)[0]
        decoder_features_with_passed_mask = model(
            decoder_attention_mask=invert_mask(decoder_attn_mask), decoder_input_ids=decoder_input_ids, **inputs_dict
        )[0]
        _assert_tensors_equal(decoder_features_with_passed_mask, decoder_features_with_created_mask)
        useless_mask = torch.zeros_like(decoder_attn_mask)
        decoder_features = model(decoder_attention_mask=useless_mask, **inputs_dict)[0]
        self.assertTrue(isinstance(decoder_features, torch.Tensor))  # no hidden states or attentions
        self.assertEqual(
            decoder_features.size(),
            (self.model_tester.batch_size, self.model_tester.seq_length, config.tgt_vocab_size),
        )
        if decoder_attn_mask.min().item() < -1e3:  # some tokens were masked
            self.assertFalse((decoder_features_with_created_mask == decoder_features).all().item())

        # Test different encoder attention masks
        decoder_features_with_long_encoder_mask = model(
            inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"].long()
        )[0]
        _assert_tensors_equal(decoder_features_with_long_encoder_mask, decoder_features_with_created_mask)

249
    def test_save_load_missing_keys(self):
250
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
251

252
253
254
255
256
257
258
259
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

260
    @unittest.skip("Test has a segmentation fault on torch 1.8.0")
261
262
263
264
265
266
267
268
269
270
271
272
273
    def test_export_to_onnx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        model = FSMTModel(config).to(torch_device)
        with tempfile.TemporaryDirectory() as tmpdirname:
            torch.onnx.export(
                model,
                (inputs_dict["input_ids"], inputs_dict["attention_mask"]),
                f"{tmpdirname}/fsmt_test.onnx",
                export_params=True,
                opset_version=12,
                input_names=["input_ids", "attention_mask"],
            )

274
275
    def test_ensure_weights_are_shared(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
276
277

        config.tie_word_embeddings = True
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        model = FSMTForConditionalGeneration(config)

        # FSMT shares three weights.
        # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors.
        self.assertEqual(
            len(
                {
                    model.get_output_embeddings().weight.data_ptr(),
                    model.get_input_embeddings().weight.data_ptr(),
                    model.base_model.decoder.output_projection.weight.data_ptr(),
                }
            ),
            1,
        )

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        config.tie_word_embeddings = False
        model = FSMTForConditionalGeneration(config)

        # FSMT shares three weights.
        # Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors.
        self.assertEqual(
            len(
                {
                    model.get_output_embeddings().weight.data_ptr(),
                    model.get_input_embeddings().weight.data_ptr(),
                    model.base_model.decoder.output_projection.weight.data_ptr(),
                }
            ),
            2,
        )

309
310
311
312
313
314
315
316
317
318
319
320
    @unittest.skip("can't be implemented for FSMT due to dual vocab.")
    def test_resize_tokens_embeddings(self):
        pass

    @unittest.skip("Passing inputs_embeds not implemented for FSMT.")
    def test_inputs_embeds(self):
        pass

    @unittest.skip("model weights aren't tied in FSMT.")
    def test_tie_model_weights(self):
        pass

321
322
323
    @unittest.skip("TODO: Decoder embeddings cannot be resized at the moment")
    def test_resize_embeddings_untied(self):
        pass
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375


@require_torch
class FSMTHeadTests(unittest.TestCase):
    src_vocab_size = 99
    tgt_vocab_size = 99
    langs = ["ru", "en"]

    def _get_config(self):
        return FSMTConfig(
            src_vocab_size=self.src_vocab_size,
            tgt_vocab_size=self.tgt_vocab_size,
            langs=self.langs,
            d_model=24,
            encoder_layers=2,
            decoder_layers=2,
            encoder_attention_heads=2,
            decoder_attention_heads=2,
            encoder_ffn_dim=32,
            decoder_ffn_dim=32,
            max_position_embeddings=48,
            eos_token_id=2,
            pad_token_id=1,
            bos_token_id=0,
        )

    def _get_config_and_data(self):
        input_ids = torch.tensor(
            [
                [71, 82, 18, 33, 46, 91, 2],
                [68, 34, 26, 58, 30, 82, 2],
                [5, 97, 17, 39, 94, 40, 2],
                [76, 83, 94, 25, 70, 78, 2],
                [87, 59, 41, 35, 48, 66, 2],
                [55, 13, 16, 58, 5, 2, 1],  # note padding
                [64, 27, 31, 51, 12, 75, 2],
                [52, 64, 86, 17, 83, 39, 2],
                [48, 61, 9, 24, 71, 82, 2],
                [26, 1, 60, 48, 22, 13, 2],
                [21, 5, 62, 28, 14, 76, 2],
                [45, 98, 37, 86, 59, 48, 2],
                [70, 70, 50, 9, 28, 0, 2],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        batch_size = input_ids.shape[0]
        config = self._get_config()
        return config, input_ids, batch_size

    def test_generate_beam_search(self):
376
        input_ids = torch.tensor([[71, 82, 2], [68, 34, 2]], dtype=torch.long, device=torch_device)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        config = self._get_config()
        lm_model = FSMTForConditionalGeneration(config).to(torch_device)
        lm_model.eval()

        max_length = 5
        new_input_ids = lm_model.generate(
            input_ids.clone(),
            do_sample=True,
            num_return_sequences=1,
            num_beams=2,
            no_repeat_ngram_size=3,
            max_length=max_length,
        )
        self.assertEqual(new_input_ids.shape, (input_ids.shape[0], max_length))

    def test_shift_tokens_right(self):
393
        input_ids = torch.tensor([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=torch.long)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        shifted = shift_tokens_right(input_ids, 1)
        n_pad_before = input_ids.eq(1).float().sum()
        n_pad_after = shifted.eq(1).float().sum()
        self.assertEqual(shifted.shape, input_ids.shape)
        self.assertEqual(n_pad_after, n_pad_before - 1)
        self.assertTrue(torch.eq(shifted[:, 0], 2).all())

    def test_generate_fp16(self):
        config, input_ids, batch_size = self._get_config_and_data()
        attention_mask = input_ids.ne(1).to(torch_device)
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)

    def test_dummy_inputs(self):
        config, *_ = self._get_config_and_data()
        model = FSMTForConditionalGeneration(config).eval().to(torch_device)
        model(**model.dummy_inputs)

    def test_prepare_fsmt_decoder_inputs(self):
        config, *_ = self._get_config_and_data()
        input_ids = _long_tensor(([4, 4, 2]))
        decoder_input_ids = _long_tensor([[26388, 2, config.pad_token_id]])
Yih-Dar's avatar
Yih-Dar committed
419
420
        causal_mask_dtype = torch.float32
        ignore = torch.finfo(causal_mask_dtype).min
421
        decoder_input_ids, decoder_attn_mask, causal_mask = _prepare_fsmt_decoder_inputs(
Yih-Dar's avatar
Yih-Dar committed
422
            config, input_ids, decoder_input_ids, causal_mask_dtype=causal_mask_dtype
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        )
        expected_causal_mask = torch.tensor(
            [[0, ignore, ignore], [0, 0, ignore], [0, 0, 0]]  # never attend to the final token, because its pad
        ).to(input_ids.device)
        self.assertEqual(decoder_attn_mask.size(), decoder_input_ids.size())
        self.assertTrue(torch.eq(expected_causal_mask, causal_mask).all())


def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
440
441
442
        if len(prefix) > 0:
            prefix = f"{prefix}: "
        raise AssertionError(f"{prefix}{a} != {b}")
443
444
445
446
447
448
449
450
451


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)


TOLERANCE = 1e-4


452
453
454
455
456
457
458
459
pairs = [
    ["en-ru"],
    ["ru-en"],
    ["en-de"],
    ["de-en"],
]


460
@require_torch
461
462
@require_sentencepiece
@require_tokenizers
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
class FSMTModelIntegrationTests(unittest.TestCase):
    tokenizers_cache = {}
    models_cache = {}
    default_mname = "facebook/wmt19-en-ru"

    @cached_property
    def default_tokenizer(self):
        return self.get_tokenizer(self.default_mname)

    @cached_property
    def default_model(self):
        return self.get_model(self.default_mname)

    def get_tokenizer(self, mname):
        if mname not in self.tokenizers_cache:
            self.tokenizers_cache[mname] = FSMTTokenizer.from_pretrained(mname)
        return self.tokenizers_cache[mname]

    def get_model(self, mname):
        if mname not in self.models_cache:
            self.models_cache[mname] = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device)
            if torch_device == "cuda":
                self.models_cache[mname].half()
        return self.models_cache[mname]

    @slow
    def test_inference_no_head(self):
        tokenizer = self.default_tokenizer
        model = FSMTModel.from_pretrained(self.default_mname).to(torch_device)

        src_text = "My friend computer will translate this for me"
        input_ids = tokenizer([src_text], return_tensors="pt")["input_ids"]
495
        input_ids = _long_tensor(input_ids).to(torch_device)
496
497
498
499
500
501
502
503
504
        inputs_dict = prepare_fsmt_inputs_dict(model.config, input_ids)
        with torch.no_grad():
            output = model(**inputs_dict)[0]
        expected_shape = torch.Size((1, 10, model.config.tgt_vocab_size))
        self.assertEqual(output.shape, expected_shape)
        # expected numbers were generated when en-ru model, using just fairseq's model4.pt
        # may have to adjust if switched to a different checkpoint
        expected_slice = torch.tensor(
            [[-1.5753, -1.5753, 2.8975], [-0.9540, -0.9540, 1.0299], [-3.3131, -3.3131, 0.5219]]
505
        ).to(torch_device)
506
507
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE))

508
    def translation_setup(self, pair):
509
510
511
512
513
514
515
516
517
518
        text = {
            "en": "Machine learning is great, isn't it?",
            "ru": "袦邪褕懈薪薪芯械 芯斜褍褔械薪懈械 - 褝褌芯 蟹写芯褉芯胁芯, 薪械 褌邪泻 谢懈?",
            "de": "Maschinelles Lernen ist gro脽artig, oder?",
        }

        src, tgt = pair.split("-")
        print(f"Testing {src} -> {tgt}")
        mname = f"facebook/wmt19-{pair}"

519
520
        src_text = text[src]
        tgt_text = text[tgt]
521
522
523

        tokenizer = self.get_tokenizer(mname)
        model = self.get_model(mname)
524
525
526
527
528
529
530
531
        return tokenizer, model, src_text, tgt_text

    @parameterized.expand(pairs)
    @slow
    def test_translation_direct(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)

        input_ids = tokenizer.encode(src_text, return_tensors="pt").to(torch_device)
532
533
534

        outputs = model.generate(input_ids)
        decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
535
536
537
538
539
540
541
542
543
544
        assert decoded == tgt_text, f"\n\ngot: {decoded}\nexp: {tgt_text}\n"

    @parameterized.expand(pairs)
    @slow
    def test_translation_pipeline(self, pair):
        tokenizer, model, src_text, tgt_text = self.translation_setup(pair)
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(model, tokenizer, framework="pt", device=device)
        output = pipeline([src_text])
        self.assertEqual([tgt_text], [x["translation_text"] for x in output])
545
546
547
548
549
550
551
552
553


@require_torch
class TestSinusoidalPositionalEmbeddings(unittest.TestCase):
    padding_idx = 1
    tolerance = 1e-4

    def test_basic(self):
        input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device)
554
        emb1 = SinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6, padding_idx=self.padding_idx).to(
555
556
557
558
559
560
561
562
            torch_device
        )
        emb = emb1(input_ids)
        desired_weights = torch.tensor(
            [
                [9.0930e-01, 1.9999e-02, 2.0000e-04, -4.1615e-01, 9.9980e-01, 1.0000e00],
                [1.4112e-01, 2.9995e-02, 3.0000e-04, -9.8999e-01, 9.9955e-01, 1.0000e00],
            ]
563
        ).to(torch_device)
564
565
566
567
568
569
570
        self.assertTrue(
            torch.allclose(emb[0], desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n",
        )

    def test_odd_embed_dim(self):
        # odd embedding_dim  is allowed
571
        SinusoidalPositionalEmbedding(num_positions=4, embedding_dim=5, padding_idx=self.padding_idx).to(torch_device)
572
573

        # odd num_embeddings is allowed
574
        SinusoidalPositionalEmbedding(num_positions=5, embedding_dim=4, padding_idx=self.padding_idx).to(torch_device)
575
576
577
578
579
580
581
582
583
584

    @unittest.skip("different from marian (needs more research)")
    def test_positional_emb_weights_against_marian(self):
        desired_weights = torch.tensor(
            [
                [0, 0, 0, 0, 0],
                [0.84147096, 0.82177866, 0.80180490, 0.78165019, 0.76140374],
                [0.90929741, 0.93651021, 0.95829457, 0.97505713, 0.98720258],
            ]
        )
585
        emb1 = SinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512, padding_idx=self.padding_idx).to(
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
            torch_device
        )
        weights = emb1.weights.data[:3, :5]
        # XXX: only the 1st and 3rd lines match - this is testing against
        # verbatim copy of SinusoidalPositionalEmbedding from fairseq
        self.assertTrue(
            torch.allclose(weights, desired_weights, atol=self.tolerance),
            msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n",
        )

        # test that forward pass is just a lookup, there is no ignore padding logic
        input_ids = torch.tensor(
            [[4, 10, self.padding_idx, self.padding_idx, self.padding_idx]], dtype=torch.long, device=torch_device
        )
        no_cache_pad_zero = emb1(input_ids)[0]
        # XXX: only the 1st line matches the 3rd
        self.assertTrue(
            torch.allclose(torch.tensor(desired_weights, device=torch_device), no_cache_pad_zero[:3, :5], atol=1e-3)
        )