optimization_test.py 4.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import unittest

thomwolf's avatar
thomwolf committed
21
22
import torch

thomwolf's avatar
thomwolf committed
23
24
25
from pytorch_transformers import (AdamW, ConstantLRSchedule, WarmupConstantSchedule,
                                  WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule)

lukovnikov's avatar
lukovnikov committed
26
import numpy as np
27

lukovnikov's avatar
lukovnikov committed
28

thomwolf's avatar
thomwolf committed
29
30
31
32
33
34
35
def unwrap_schedule(scheduler, num_steps=10):
    lrs = []
    for _ in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
    return lrs

36
37
38
39
40
41
42
class OptimizationTest(unittest.TestCase):

    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

thomwolf's avatar
thomwolf committed
43
    def test_adam_w(self):
44
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
45
        target = torch.tensor([0.4, 0.2, -0.5])
thomwolf's avatar
thomwolf committed
46
        criterion = torch.nn.MSELoss()
thomwolf's avatar
thomwolf committed
47
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
48
        optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0)
49
        for _ in range(100):
thomwolf's avatar
thomwolf committed
50
            loss = criterion(w, target)
51
52
            loss.backward()
            optimizer.step()
thomwolf's avatar
thomwolf committed
53
54
            w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
            w.grad.zero_()
55
56
57
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)


lukovnikov's avatar
lukovnikov committed
58
class ScheduleInitTest(unittest.TestCase):
thomwolf's avatar
thomwolf committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    m = torch.nn.Linear(50, 50)
    optimizer = AdamW(m.parameters(), lr=10.)
    num_steps = 10

    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

    def test_constant_scheduler(self):
        scheduler = ConstantLRSchedule(self.optimizer)
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [10.] * self.num_steps
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

    def test_warmup_constant_scheduler(self):
        scheduler = WarmupConstantSchedule(self.optimizer, warmup_steps=4)
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

    def test_warmup_linear_scheduler(self):
        scheduler = WarmupLinearSchedule(self.optimizer, warmup_steps=2, t_total=10)
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListEqual([l[0] for l in lrs], expected_learning_rates)

    def test_warmup_cosine_scheduler(self):
        scheduler = WarmupCosineSchedule(self.optimizer, warmup_steps=2, t_total=10)
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)

    def test_warmup_cosine_hard_restart_scheduler(self):
        scheduler = WarmupCosineWithHardRestartsSchedule(self.optimizer, warmup_steps=2, cycles=2, t_total=10)
        lrs = unwrap_schedule(scheduler, self.num_steps)
        expected_learning_rates = [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0]
        self.assertEqual(len(lrs[0]), 1)
        self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
lukovnikov's avatar
lukovnikov committed
102
103


104
105
if __name__ == "__main__":
    unittest.main()