"INSTALL/grub/vscode:/vscode.git/clone" did not exist on "a1c6fe2d2428cb8a1b4a9e11a9a5075a4bccecd1"
test_modeling_vivit.py 14.1 KB
Newer Older
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch ViViT model."""
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

import copy
import inspect
import unittest

import numpy as np
from huggingface_hub import hf_hub_download

from transformers import VivitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
31
from ...test_pipeline_mixin import PipelineTesterMixin
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


if is_torch_available():
    import torch
    from torch import nn

    from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VivitForVideoClassification, VivitModel


if is_vision_available():
    from transformers import VivitImageProcessor


class VivitModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        is_training=True,
        use_labels=True,
        num_labels=10,
        image_size=10,
        num_frames=8,  # decreased, because default 32 takes too much RAM at inference
        tubelet_size=[2, 4, 4],
        num_channels=3,
57
58
        hidden_size=32,
        num_hidden_layers=2,
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu_fast",
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        initializer_range=0.02,
        layer_norm_eps=1e-06,
        qkv_bias=True,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.is_training = is_training
        self.use_labels = use_labels
        self.num_labels = num_labels
        self.image_size = image_size
        self.num_frames = num_frames
        self.tubelet_size = tubelet_size
        self.num_channels = num_channels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.qkv_bias = qkv_bias
        self.scope = scope

        self.seq_length = (
            (self.image_size // self.tubelet_size[2])
            * (self.image_size // self.tubelet_size[1])
            * (self.num_frames // self.tubelet_size[0])
        ) + 1  # CLS token

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor(
            [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]
        )

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        config = VivitConfig(
            num_frames=self.num_frames,
            image_size=self.image_size,
            tubelet_size=self.tubelet_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            initializer_range=self.initializer_range,
            layer_norm_eps=self.layer_norm_eps,
            qkv_bias=self.qkv_bias,
        )
        config.num_labels = self.num_labels
        return config

    def create_and_check_model(self, config, pixel_values, labels):
        model = VivitModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

    def create_and_check_for_video_classification(self, config, pixel_values, labels):
        model = VivitForVideoClassification(config)
        model.to(torch_device)
        model.eval()

        result = model(pixel_values)

        # verify the logits shape
        expected_shape = torch.Size((self.batch_size, self.num_labels))
        self.parent.assertEqual(result.logits.shape, expected_shape)

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
155
class VivitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
156
157
158
159
160
161
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as Vivit does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (VivitModel, VivitForVideoClassification) if is_torch_available() else ()
162
163
164
165
166
    pipeline_model_mapping = (
        {"feature-extraction": VivitModel, "video-classification": VivitForVideoClassification}
        if is_torch_available()
        else {}
    )
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = VivitModelTester(self)
        self.config_tester = ConfigTester(self, config_class=VivitConfig, has_text_modality=False, hidden_size=37)

    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)

        if return_labels:
            if model_class in get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING):
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

    def test_config(self):
        self.config_tester.run_common_tests()

    @unittest.skip(reason="Vivit does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

195
    def test_model_get_set_embeddings(self):
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values", "head_mask"]
            self.assertListEqual(arg_names[:2], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_video_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_video_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
226
227
228
        model_name = "google/vivit-b-16x2-kinetics400"
        model = VivitModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            seq_len = self.model_tester.seq_length

            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + 1, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_len, seq_len],
            )

    def test_hidden_states_output(self):
        def check_hidden_states_output(inputs_dict, config, model_class):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            hidden_states = outputs.hidden_states
            expected_num_layers = self.model_tester.num_hidden_layers + 1
            self.assertEqual(len(hidden_states), expected_num_layers)

            seq_length = self.model_tester.seq_length

            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
            )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)


# We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video():
    file = hf_hub_download(
        repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_32_frames.npy", repo_type="dataset"
    )
    video = np.load(file)
    return list(video)


@require_torch
@require_vision
class VivitModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        return VivitImageProcessor() if is_vision_available() else None

    @slow
    def test_inference_for_video_classification(self):
        model = VivitForVideoClassification.from_pretrained("google/vivit-b-16x2-kinetics400").to(torch_device)

        image_processor = self.default_image_processor
        video = prepare_video()
        inputs = image_processor(video, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 400))
        self.assertEqual(outputs.logits.shape, expected_shape)

        # taken from original model
352
        expected_slice = torch.tensor([-0.9498, 2.7971, -1.4049, 0.1024, -1.8353]).to(torch_device)
Jegor Kit拧kerkin's avatar
Jegor Kit拧kerkin committed
353
354

        self.assertTrue(torch.allclose(outputs.logits[0, :5], expected_slice, atol=1e-4))
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

    @slow
    def test_inference_interpolate_pos_encoding(self):
        # Vivit models have an `interpolate_pos_encoding` argument in their forward method,
        # allowing to interpolate the pre-trained position embeddings in order to use
        # the model on higher resolutions. The DINO model by Facebook AI leverages this
        # to visualize self-attention on higher resolution images.
        model = VivitModel.from_pretrained("google/vivit-b-16x2").to(torch_device)

        image_processor = VivitImageProcessor.from_pretrained("google/vivit-b-16x2")
        video = prepare_video()
        inputs = image_processor(
            video, size={"shortest_edge": 480}, crop_size={"height": 480, "width": 480}, return_tensors="pt"
        )
        pixel_values = inputs.pixel_values.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(pixel_values, interpolate_pos_encoding=True)

        # verify the logits shape
        expected_shape = torch.Size((1, 3137, 768))
        self.assertEqual(outputs.last_hidden_state.shape, expected_shape)