"examples/vscode:/vscode.git/clone" did not exist on "d2753dcbec7123500c1a84a7c2143a79e74df48f"
test_modeling_focalnet.py 16.9 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch FocalNet model."""
NielsRogge's avatar
NielsRogge committed
16
17
18
19
20
21
22
23

import collections
import unittest

from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available

Alara Dirik's avatar
Alara Dirik committed
24
from ...test_backbone_common import BackboneTesterMixin
NielsRogge's avatar
NielsRogge committed
25
26
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
27
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
28
29
30
31
32
33


if is_torch_available():
    import torch
    from torch import nn

Alara Dirik's avatar
Alara Dirik committed
34
35
36
37
38
39
    from transformers import (
        FocalNetBackbone,
        FocalNetForImageClassification,
        FocalNetForMaskedImageModeling,
        FocalNetModel,
    )
NielsRogge's avatar
NielsRogge committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

if is_vision_available():
    from PIL import Image

    from transformers import AutoImageProcessor


class FocalNetModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=32,
        patch_size=2,
        num_channels=3,
        embed_dim=16,
Alara Dirik's avatar
Alara Dirik committed
56
        hidden_sizes=[32, 64, 128],
NielsRogge's avatar
NielsRogge committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        depths=[1, 2, 1],
        num_heads=[2, 2, 4],
        window_size=2,
        mlp_ratio=2.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=False,
        patch_norm=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        is_training=True,
        scope=None,
        use_labels=True,
        type_sequence_label_size=10,
        encoder_stride=8,
        out_features=["stage1", "stage2"],
Alara Dirik's avatar
Alara Dirik committed
76
        out_indices=[1, 2],
NielsRogge's avatar
NielsRogge committed
77
78
79
80
81
82
83
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
Alara Dirik's avatar
Alara Dirik committed
84
        self.hidden_sizes = hidden_sizes
NielsRogge's avatar
NielsRogge committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        self.depths = depths
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.patch_norm = patch_norm
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.is_training = is_training
        self.scope = scope
        self.use_labels = use_labels
        self.type_sequence_label_size = type_sequence_label_size
        self.encoder_stride = encoder_stride
        self.out_features = out_features
Alara Dirik's avatar
Alara Dirik committed
104
        self.out_indices = out_indices
NielsRogge's avatar
NielsRogge committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return FocalNetConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            embed_dim=self.embed_dim,
Alara Dirik's avatar
Alara Dirik committed
123
            hidden_sizes=self.hidden_sizes,
NielsRogge's avatar
NielsRogge committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
            depths=self.depths,
            num_heads=self.num_heads,
            window_size=self.window_size,
            mlp_ratio=self.mlp_ratio,
            qkv_bias=self.qkv_bias,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            drop_path_rate=self.drop_path_rate,
            hidden_act=self.hidden_act,
            use_absolute_embeddings=self.use_absolute_embeddings,
            path_norm=self.patch_norm,
            layer_norm_eps=self.layer_norm_eps,
            initializer_range=self.initializer_range,
            encoder_stride=self.encoder_stride,
            out_features=self.out_features,
Alara Dirik's avatar
Alara Dirik committed
139
            out_indices=self.out_indices,
NielsRogge's avatar
NielsRogge committed
140
141
142
143
144
145
146
147
148
149
150
151
152
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = FocalNetModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
        expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))

Alara Dirik's avatar
Alara Dirik committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def create_and_check_backbone(self, config, pixel_values, labels):
        model = FocalNetBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.image_size, 8, 8])

        # verify channels
        self.parent.assertEqual(len(model.channels), len(config.out_features))
        self.parent.assertListEqual(model.channels, config.hidden_sizes[:-1])

        # verify backbone works with out_features=None
        config.out_features = None
        model = FocalNetBackbone(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        # verify feature maps
        self.parent.assertEqual(len(result.feature_maps), 1)
        self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.image_size * 2, 4, 4])

        # verify channels
        self.parent.assertEqual(len(model.channels), 1)
        self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])

NielsRogge's avatar
NielsRogge committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
        model = FocalNetForMaskedImageModeling(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(
            result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
        )

        # test greyscale images
        config.num_channels = 1
        model = FocalNetForMaskedImageModeling(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size))

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = FocalNetForImageClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

        # test greyscale images
        config.num_channels = 1
        model = FocalNetForImageClassification(config)
        model.to(torch_device)
        model.eval()

        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
228
class FocalNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
229
230
231
232
233
    all_model_classes = (
        (
            FocalNetModel,
            FocalNetForImageClassification,
            FocalNetForMaskedImageModeling,
Alara Dirik's avatar
Alara Dirik committed
234
            FocalNetBackbone,
NielsRogge's avatar
NielsRogge committed
235
236
237
238
        )
        if is_torch_available()
        else ()
    )
239
    pipeline_model_mapping = (
240
        {"image-feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification}
241
242
243
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
244
245
246
247
248
249
250
251
252
    fx_compatible = False

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False
    has_attentions = False

    def setUp(self):
        self.model_tester = FocalNetModelTester(self)
Alara Dirik's avatar
Alara Dirik committed
253
        self.config_tester = ConfigTester(self, config_class=FocalNetConfig, embed_dim=37, has_text_modality=False)
NielsRogge's avatar
NielsRogge committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

Alara Dirik's avatar
Alara Dirik committed
271
272
273
274
    def test_backbone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_backbone(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
275
276
277
278
279
280
281
282
283
284
285
286
    def test_for_masked_image_modeling(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @unittest.skip(reason="FocalNet does not use inputs_embeds")
    def test_inputs_embeds(self):
        pass

Alara Dirik's avatar
Alara Dirik committed
287
    @unittest.skip(reason="FocalNet does not use feedforward chunking")
NielsRogge's avatar
NielsRogge committed
288
289
290
    def test_feed_forward_chunking(self):
        pass

291
    def test_model_get_set_embeddings(self):
NielsRogge's avatar
NielsRogge committed
292
293
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

Alara Dirik's avatar
Alara Dirik committed
294
        for model_class in self.all_model_classes[:-1]:
NielsRogge's avatar
NielsRogge committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
        model = model_class(config)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

        hidden_states = outputs.hidden_states

        expected_num_layers = getattr(
            self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
        )
        self.assertEqual(len(hidden_states), expected_num_layers)

        # FocalNet has a different seq_length
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )

        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])

        self.assertListEqual(
            list(hidden_states[0].shape[-2:]),
            [num_patches, self.model_tester.embed_dim],
        )

        reshaped_hidden_states = outputs.reshaped_hidden_states
        self.assertEqual(len(reshaped_hidden_states), expected_num_layers)

        batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
        reshaped_hidden_states = (
            reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1)
        )
        self.assertListEqual(
            list(reshaped_hidden_states.shape[-2:]),
            [num_patches, self.model_tester.embed_dim],
        )

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )

Alara Dirik's avatar
Alara Dirik committed
350
        for model_class in self.all_model_classes[:-1]:
NielsRogge's avatar
NielsRogge committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

    def test_hidden_states_output_with_padding(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.patch_size = 3

        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )

        padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
        padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])

Alara Dirik's avatar
Alara Dirik committed
378
        for model_class in self.all_model_classes[:-1]:
NielsRogge's avatar
NielsRogge committed
379
380
381
382
383
384
385
386
387
388
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))

    @slow
    def test_model_from_pretrained(self):
389
390
391
        model_name = "microsoft/focalnet-tiny"
        model = FocalNetModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if "embeddings" not in name and param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )


@require_vision
@require_torch
class FocalNetModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_image_processor(self):
        # TODO update organization
        return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny") if is_vision_available() else None

    @slow
    def test_inference_image_classification_head(self):
        model = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny").to(torch_device)
        image_processor = self.default_image_processor

        image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)
        expected_slice = torch.tensor([0.2166, -0.4368, 0.2191]).to(torch_device)
        self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
        self.assertTrue(outputs.logits.argmax(dim=-1).item(), 281)
Alara Dirik's avatar
Alara Dirik committed
434
435
436
437
438
439
440
441
442
443
444


@require_torch
class FocalNetBackboneTest(BackboneTesterMixin, unittest.TestCase):
    all_model_classes = (FocalNetBackbone,) if is_torch_available() else ()
    config_class = FocalNetConfig

    has_attentions = False

    def setUp(self):
        self.model_tester = FocalNetModelTester(self)