test_modeling_donut_swin.py 13.6 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch Donut Swin model."""
NielsRogge's avatar
NielsRogge committed
16
17
18
19
20
21

import collections
import unittest

from transformers import DonutSwinConfig
from transformers.testing_utils import require_torch, slow, torch_device
22
from transformers.utils import is_torch_available
NielsRogge's avatar
NielsRogge committed
23
24
25

from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
26
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144


if is_torch_available():
    import torch
    from torch import nn

    from transformers import DonutSwinModel


class DonutSwinModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=32,
        patch_size=2,
        num_channels=3,
        embed_dim=16,
        depths=[1, 2, 1],
        num_heads=[2, 2, 4],
        window_size=2,
        mlp_ratio=2.0,
        qkv_bias=True,
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        drop_path_rate=0.1,
        hidden_act="gelu",
        use_absolute_embeddings=False,
        patch_norm=True,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        is_training=True,
        scope=None,
        use_labels=True,
        type_sequence_label_size=10,
        encoder_stride=8,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_heads = num_heads
        self.window_size = window_size
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.drop_path_rate = drop_path_rate
        self.hidden_act = hidden_act
        self.use_absolute_embeddings = use_absolute_embeddings
        self.patch_norm = patch_norm
        self.layer_norm_eps = layer_norm_eps
        self.initializer_range = initializer_range
        self.is_training = is_training
        self.scope = scope
        self.use_labels = use_labels
        self.type_sequence_label_size = type_sequence_label_size
        self.encoder_stride = encoder_stride

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DonutSwinConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            embed_dim=self.embed_dim,
            depths=self.depths,
            num_heads=self.num_heads,
            window_size=self.window_size,
            mlp_ratio=self.mlp_ratio,
            qkv_bias=self.qkv_bias,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            drop_path_rate=self.drop_path_rate,
            hidden_act=self.hidden_act,
            use_absolute_embeddings=self.use_absolute_embeddings,
            path_norm=self.patch_norm,
            layer_norm_eps=self.layer_norm_eps,
            initializer_range=self.initializer_range,
            encoder_stride=self.encoder_stride,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = DonutSwinModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)

        expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
        expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            pixel_values,
            labels,
        ) = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
145
class DonutSwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
146
    all_model_classes = (DonutSwinModel,) if is_torch_available() else ()
147
    pipeline_model_mapping = {"image-feature-extraction": DonutSwinModel} if is_torch_available() else {}
NielsRogge's avatar
NielsRogge committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    fx_compatible = True

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DonutSwinModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DonutSwinConfig, embed_dim=37)

    def test_config(self):
        self.create_and_test_config_common_properties()
        self.config_tester.create_and_test_config_to_json_string()
        self.config_tester.create_and_test_config_to_json_file()
        self.config_tester.create_and_test_config_from_and_save_pretrained()
        self.config_tester.create_and_test_config_with_num_labels()
        self.config_tester.check_config_can_be_init_without_params()
        self.config_tester.check_config_arguments_init()

    def create_and_test_config_common_properties(self):
        return

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_inputs_embeds(self):
        # DonutSwin does not use inputs_embeds
        pass

178
    def test_model_get_set_embeddings(self):
NielsRogge's avatar
NielsRogge committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
            config.return_dict = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            expected_num_attentions = len(self.model_tester.depths)
            self.assertEqual(len(attentions), expected_num_attentions)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            window_size_squared = config.window_size**2
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.attentions
            self.assertEqual(len(attentions), expected_num_attentions)

            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_heads[0], window_size_squared, window_size_squared],
            )
            out_len = len(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            else:
                # also another +1 for reshaped_hidden_states
                added_hidden_states = 2
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.attentions

            self.assertEqual(len(self_attentions), expected_num_attentions)

            self.assertListEqual(
                list(self_attentions[0].shape[-3:]),
                [self.model_tester.num_heads[0], window_size_squared, window_size_squared],
            )

    def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
        model = model_class(config)
        model.to(torch_device)
        model.eval()

        with torch.no_grad():
            outputs = model(**self._prepare_for_class(inputs_dict, model_class))

        hidden_states = outputs.hidden_states

        expected_num_layers = getattr(
            self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
        )
        self.assertEqual(len(hidden_states), expected_num_layers)

        # DonutSwin has a different seq_length
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )

        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])

        self.assertListEqual(
            list(hidden_states[0].shape[-2:]),
            [num_patches, self.model_tester.embed_dim],
        )

        reshaped_hidden_states = outputs.reshaped_hidden_states
        self.assertEqual(len(reshaped_hidden_states), expected_num_layers)

        batch_size, num_channels, height, width = reshaped_hidden_states[0].shape
        reshaped_hidden_states = (
            reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1)
        )
        self.assertListEqual(
            list(reshaped_hidden_states.shape[-2:]),
            [num_patches, self.model_tester.embed_dim],
        )

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            self.check_hidden_states_output(inputs_dict, config, model_class, image_size)

    def test_hidden_states_output_with_padding(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.patch_size = 3

        image_size = (
            self.model_tester.image_size
            if isinstance(self.model_tester.image_size, collections.abc.Iterable)
            else (self.model_tester.image_size, self.model_tester.image_size)
        )
        patch_size = (
            config.patch_size
            if isinstance(config.patch_size, collections.abc.Iterable)
            else (config.patch_size, config.patch_size)
        )

        padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
        padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))

    @slow
    def test_model_from_pretrained(self):
336
337
338
        model_name = "naver-clova-ix/donut-base"
        model = DonutSwinModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352

    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if "embeddings" not in name and param.requires_grad:
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )