test_modeling_clip.py 32.7 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Arthur's avatar
Arthur committed
15
"""Testing suite for the PyTorch CLIP model."""
Suraj Patil's avatar
Suraj Patil committed
16
17
18
19
20
21

import inspect
import os
import tempfile
import unittest

22
import numpy as np
Suraj Patil's avatar
Suraj Patil committed
23
import requests
24

25
import transformers
26
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
27
28
29
30
31
32
33
34
from transformers.testing_utils import (
    is_flax_available,
    is_pt_flax_cross_test,
    require_torch,
    require_vision,
    slow,
    torch_device,
)
35
from transformers.utils import is_torch_available, is_vision_available
Suraj Patil's avatar
Suraj Patil committed
36

Yih-Dar's avatar
Yih-Dar committed
37
38
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
39
40
41
42
43
44
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
45
from ...test_pipeline_mixin import PipelineTesterMixin
Suraj Patil's avatar
Suraj Patil committed
46
47
48
49


if is_torch_available():
    import torch
50
    from torch import nn
Suraj Patil's avatar
Suraj Patil committed
51

52
    from transformers import (
53
        CLIPForImageClassification,
54
55
56
57
58
59
        CLIPModel,
        CLIPTextModel,
        CLIPTextModelWithProjection,
        CLIPVisionModel,
        CLIPVisionModelWithProjection,
    )
Suraj Patil's avatar
Suraj Patil committed
60
61
62
63
64
65
66
67


if is_vision_available():
    from PIL import Image

    from transformers import CLIPProcessor


68
69
if is_flax_available():
    import jax.numpy as jnp
70

71
72
73
74
75
76
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )


Suraj Patil's avatar
Suraj Patil committed
77
78
79
80
81
82
83
84
85
86
class CLIPVisionModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        hidden_size=32,
87
        projection_dim=32,
88
        num_hidden_layers=2,
Suraj Patil's avatar
Suraj Patil committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.hidden_size = hidden_size
103
        self.projection_dim = projection_dim
Suraj Patil's avatar
Suraj Patil committed
104
105
106
107
108
109
110
111
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.initializer_range = initializer_range
        self.scope = scope

NielsRogge's avatar
NielsRogge committed
112
113
114
115
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
        num_patches = (image_size // patch_size) ** 2
        self.seq_length = num_patches + 1

Suraj Patil's avatar
Suraj Patil committed
116
117
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
118
119
120
121
122
123
        config = self.get_config()

        return config, pixel_values

    def get_config(self):
        return CLIPVisionConfig(
Suraj Patil's avatar
Suraj Patil committed
124
125
126
127
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
128
            projection_dim=self.projection_dim,
Suraj Patil's avatar
Suraj Patil committed
129
130
131
132
133
134
135
136
137
138
139
140
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values):
        model = CLIPVisionModel(config=config)
        model.to(torch_device)
        model.eval()
Suraj Patil's avatar
Suraj Patil committed
141
142
        with torch.no_grad():
            result = model(pixel_values)
Suraj Patil's avatar
Suraj Patil committed
143
144
145
146
147
148
149
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

150
151
152
153
154
155
156
157
158
159
160
161
162
    def create_and_check_model_with_projection(self, config, pixel_values):
        model = CLIPVisionModelWithProjection(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(pixel_values)
        # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
        image_size = (self.image_size, self.image_size)
        patch_size = (self.patch_size, self.patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
        self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim))

Suraj Patil's avatar
Suraj Patil committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class CLIPVisionModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

177
    all_model_classes = (CLIPVisionModel, CLIPVisionModelWithProjection) if is_torch_available() else ()
178
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
179
180
181
182
183
184
185
186
187
188
189
    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = CLIPVisionModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CLIPVisionConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
190
    @unittest.skip(reason="CLIP does not use inputs_embeds")
Suraj Patil's avatar
Suraj Patil committed
191
192
193
    def test_inputs_embeds(self):
        pass

194
    def test_model_get_set_embeddings(self):
Suraj Patil's avatar
Suraj Patil committed
195
196
197
198
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
199
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
Suraj Patil's avatar
Suraj Patil committed
200
            x = model.get_output_embeddings()
201
            self.assertTrue(x is None or isinstance(x, nn.Linear))
Suraj Patil's avatar
Suraj Patil committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

219
220
221
222
    def test_model_with_projection(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_projection(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
223
224
225
226
227
228
    def test_training(self):
        pass

    def test_training_gradient_checkpointing(self):
        pass

229
230
231
232
233
234
235
236
237
238
239
240
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

NielsRogge's avatar
NielsRogge committed
241
    @unittest.skip(reason="CLIPVisionModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
242
243
244
    def test_save_load_fast_init_from_base(self):
        pass

NielsRogge's avatar
NielsRogge committed
245
    @unittest.skip(reason="CLIPVisionModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
246
247
248
249
250
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
251
252
253
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPVisionModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
Suraj Patil's avatar
Suraj Patil committed
254

255
256
    @slow
    def test_model_with_projection_from_pretrained(self):
257
258
259
260
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPVisionModelWithProjection.from_pretrained(model_name)
        self.assertIsNotNone(model)
        self.assertTrue(hasattr(model, "visual_projection"))
261

Suraj Patil's avatar
Suraj Patil committed
262
263
264
265
266
267
268
269
270
271
272
273

class CLIPTextModelTester:
    def __init__(
        self,
        parent,
        batch_size=12,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
274
        projection_dim=32,
275
        num_hidden_layers=2,
Suraj Patil's avatar
Suraj Patil committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        num_attention_heads=4,
        intermediate_size=37,
        dropout=0.1,
        attention_dropout=0.1,
        max_position_embeddings=512,
        initializer_range=0.02,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
292
        self.projection_dim = projection_dim
Suraj Patil's avatar
Suraj Patil committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

309
310
311
312
313
314
315
        if input_mask is not None:
            batch_size, seq_length = input_mask.shape
            rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
            for batch_idx, start_index in enumerate(rnd_start_indices):
                input_mask[batch_idx, :start_index] = 1
                input_mask[batch_idx, start_index:] = 0

316
317
318
319
320
321
        config = self.get_config()

        return config, input_ids, input_mask

    def get_config(self):
        return CLIPTextConfig(
Suraj Patil's avatar
Suraj Patil committed
322
323
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
324
            projection_dim=self.projection_dim,
Suraj Patil's avatar
Suraj Patil committed
325
326
327
328
329
330
331
332
333
334
335
336
337
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            dropout=self.dropout,
            attention_dropout=self.attention_dropout,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, input_ids, input_mask):
        model = CLIPTextModel(config=config)
        model.to(torch_device)
        model.eval()
Suraj Patil's avatar
Suraj Patil committed
338
339
340
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
Suraj Patil's avatar
Suraj Patil committed
341
342
343
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))

344
345
346
347
348
349
350
351
352
353
    def create_and_check_model_with_projection(self, config, input_ids, input_mask):
        model = CLIPTextModelWithProjection(config=config)
        model.to(torch_device)
        model.eval()
        with torch.no_grad():
            result = model(input_ids, attention_mask=input_mask)
            result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim))

Suraj Patil's avatar
Suraj Patil committed
354
355
356
357
358
359
360
361
362
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, input_mask = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class CLIPTextModelTest(ModelTesterMixin, unittest.TestCase):
363
    all_model_classes = (CLIPTextModel, CLIPTextModelWithProjection) if is_torch_available() else ()
364
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
365
366
    test_pruning = False
    test_head_masking = False
367
    model_split_percents = [0.5, 0.8, 0.9]
Suraj Patil's avatar
Suraj Patil committed
368
369
370
371
372
373
374
375
376
377
378
379

    def setUp(self):
        self.model_tester = CLIPTextModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CLIPTextConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

380
381
382
383
    def test_model_with_projection(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_projection(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
384
385
386
387
388
389
    def test_training(self):
        pass

    def test_training_gradient_checkpointing(self):
        pass

390
391
392
393
394
395
396
397
398
399
400
401
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

NielsRogge's avatar
NielsRogge committed
402
    @unittest.skip(reason="CLIP does not use inputs_embeds")
Suraj Patil's avatar
Suraj Patil committed
403
404
405
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
406
    @unittest.skip(reason="CLIPTextModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
407
408
409
    def test_save_load_fast_init_from_base(self):
        pass

NielsRogge's avatar
NielsRogge committed
410
    @unittest.skip(reason="CLIPTextModel has no base class and is not available in MODEL_MAPPING")
Suraj Patil's avatar
Suraj Patil committed
411
412
413
414
415
    def test_save_load_fast_init_to_base(self):
        pass

    @slow
    def test_model_from_pretrained(self):
416
417
418
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPTextModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
Suraj Patil's avatar
Suraj Patil committed
419

420
421
    @slow
    def test_model_with_projection_from_pretrained(self):
422
423
424
425
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPTextModelWithProjection.from_pretrained(model_name)
        self.assertIsNotNone(model)
        self.assertTrue(hasattr(model, "text_projection"))
426

Suraj Patil's avatar
Suraj Patil committed
427
428

class CLIPModelTester:
429
430
431
432
433
434
    def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
        if text_kwargs is None:
            text_kwargs = {}
        if vision_kwargs is None:
            vision_kwargs = {}

Suraj Patil's avatar
Suraj Patil committed
435
        self.parent = parent
436
437
        self.text_model_tester = CLIPTextModelTester(parent, **text_kwargs)
        self.vision_model_tester = CLIPVisionModelTester(parent, **vision_kwargs)
438
        self.batch_size = self.text_model_tester.batch_size  # need bs for batching_equivalence test
Suraj Patil's avatar
Suraj Patil committed
439
440
441
442
443
444
        self.is_training = is_training

    def prepare_config_and_inputs(self):
        text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
        vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()

445
        config = self.get_config()
Suraj Patil's avatar
Suraj Patil committed
446
447
448

        return config, input_ids, attention_mask, pixel_values

449
450
451
452
453
    def get_config(self):
        return CLIPConfig.from_text_vision_configs(
            self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
        )

Suraj Patil's avatar
Suraj Patil committed
454
455
    def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
        model = CLIPModel(config).to(torch_device).eval()
Suraj Patil's avatar
Suraj Patil committed
456
457
        with torch.no_grad():
            result = model(input_ids, pixel_values, attention_mask)
Suraj Patil's avatar
Suraj Patil committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
        self.parent.assertEqual(
            result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
        )
        self.parent.assertEqual(
            result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, input_ids, attention_mask, pixel_values = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "return_loss": True,
        }
        return config, inputs_dict


@require_torch
478
class CLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
479
    all_model_classes = (CLIPModel,) if is_torch_available() else ()
480
481
482
    pipeline_model_mapping = (
        {"feature-extraction": CLIPModel, "image-feature-extraction": CLIPVisionModel} if is_torch_available() else {}
    )
483
    fx_compatible = True
Suraj Patil's avatar
Suraj Patil committed
484
485
486
487
488
489
490
491
492
493
494
495
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    def setUp(self):
        self.model_tester = CLIPModelTester(self)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

NielsRogge's avatar
NielsRogge committed
496
    @unittest.skip(reason="Hidden_states is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
497
498
499
    def test_hidden_states_output(self):
        pass

NielsRogge's avatar
NielsRogge committed
500
    @unittest.skip(reason="Inputs_embeds is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
501
502
503
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
504
    @unittest.skip(reason="Retain_grad is tested in individual model tests")
Suraj Patil's avatar
Suraj Patil committed
505
506
507
    def test_retain_grad_hidden_states_attentions(self):
        pass

NielsRogge's avatar
NielsRogge committed
508
    @unittest.skip(reason="CLIPModel does not have input/output embeddings")
509
    def test_model_get_set_embeddings(self):
Suraj Patil's avatar
Suraj Patil committed
510
511
        pass

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    # override as the `logit_scale` parameter initilization is different for CLIP
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    # check if `logit_scale` is initilized as per the original implementation
                    if name == "logit_scale":
                        self.assertAlmostEqual(
                            param.data.item(),
                            np.log(1 / 0.07),
                            delta=1e-3,
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                        )

Suraj Patil's avatar
Suraj Patil committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    def _create_and_check_torchscript(self, config, inputs_dict):
        if not self.test_torchscript:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        configs_no_init.return_dict = False
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()

            try:
                input_ids = inputs_dict["input_ids"]
                pixel_values = inputs_dict["pixel_values"]  # CLIP needs pixel_values
                traced_model = torch.jit.trace(model, (input_ids, pixel_values))
            except RuntimeError:
                self.fail("Couldn't trace module.")

            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")

                try:
                    torch.jit.save(traced_model, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")

                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")

            model.to(torch_device)
            model.eval()

            loaded_model.to(torch_device)
            loaded_model.eval()

            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

577
578
579
580
581
582
583
584
585
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

Suraj Patil's avatar
Suraj Patil committed
586
587
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))

588
589
590
591
592
593
594
595
596
597
598
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

Suraj Patil's avatar
Suraj Patil committed
599
600
601
602
603
604
605
606
            models_equal = True
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    def test_load_vision_text_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # Save CLIPConfig and check if we can load CLIPVisionConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            vision_config = CLIPVisionConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())

        # Save CLIPConfig and check if we can load CLIPTextConfig from it
        with tempfile.TemporaryDirectory() as tmp_dir_name:
            config.save_pretrained(tmp_dir_name)
            text_config = CLIPTextConfig.from_pretrained(tmp_dir_name)
            self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    # overwrite from common since FlaxCLIPModel returns nested output
    # which is not supported in the common test
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                # convert inputs to Flax
661
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)

    # overwrite from common since FlaxCLIPModel returns nested output
    # which is not supported in the common test
    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load corresponding PyTorch class
                pt_model = model_class(config).eval()

                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

719
                fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")

                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

Suraj Patil's avatar
Suraj Patil committed
740
741
    @slow
    def test_model_from_pretrained(self):
742
743
744
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
Suraj Patil's avatar
Suraj Patil committed
745
746


747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
class CLIPForImageClassificationModelTester(CLIPModelTester):
    def __init__(self, parent):
        super().__init__(parent)
        self.batch_size = self.vision_model_tester.batch_size
        self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
        self.hidden_size = self.vision_model_tester.hidden_size
        self.seq_length = self.vision_model_tester.seq_length

    def prepare_config_and_inputs(self):
        _, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
        config = self.get_config()

        return config, pixel_values

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class CLIPForImageClassificationModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (CLIPForImageClassification,) if is_torch_available() else ()
    pipeline_model_mapping = {"image-classification": CLIPForImageClassification} if is_torch_available() else {}
    fx_compatible = False
    test_head_masking = False
    test_pruning = False
    test_resize_embeddings = False
    test_attention_outputs = False

    def setUp(self):
        self.model_tester = CLIPForImageClassificationModelTester(self)

    @unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds")
    def test_inputs_embeds(self):
        pass

    @unittest.skip(reason="CLIPForImageClassification does not support inputs_embeds")
786
    def test_model_get_set_embeddings(self):
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        pass

    @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(reason="CLIPForImageClassification does not support gradient checkpointing yet")
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

    @unittest.skip(reason="CLIP uses the same initialization scheme as the Flax original implementation")
    def test_initialization(self):
        pass


Suraj Patil's avatar
Suraj Patil committed
806
807
808
809
810
811
812
813
# We will verify our results on an image of cute cats
def prepare_img():
    url = "http://images.cocodataset.org/val2017/000000039769.jpg"
    im = Image.open(requests.get(url, stream=True).raw)
    return im


@require_vision
814
@require_torch
Suraj Patil's avatar
Suraj Patil committed
815
816
817
818
819
820
821
822
823
824
825
826
827
class CLIPModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference(self):
        model_name = "openai/clip-vit-base-patch32"
        model = CLIPModel.from_pretrained(model_name).to(torch_device)
        processor = CLIPProcessor.from_pretrained(model_name)

        image = prepare_img()
        inputs = processor(
            text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt"
        ).to(torch_device)

        # forward pass
828
829
        with torch.no_grad():
            outputs = model(**inputs)
Suraj Patil's avatar
Suraj Patil committed
830
831
832
833
834
835
836
837
838
839
840

        # verify the logits
        self.assertEqual(
            outputs.logits_per_image.shape,
            torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
        )
        self.assertEqual(
            outputs.logits_per_text.shape,
            torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
        )

841
        expected_logits = torch.tensor([[24.5701, 19.3049]], device=torch_device)
Suraj Patil's avatar
Suraj Patil committed
842
843

        self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))