modeling_transfo_xl.py 39 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model.
17
    Adapted from https://github.com/kimiyoung/transformer-xl.
thomwolf's avatar
thomwolf committed
18
19
20
    In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
"""

21

thomwolf's avatar
thomwolf committed
22
23
24
25
import logging

import torch
import torch.nn as nn
26
import torch.nn.functional as F
thomwolf's avatar
thomwolf committed
27

28
from .configuration_transfo_xl import TransfoXLConfig
Lysandre's avatar
Lysandre committed
29
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
30
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax
31
from .modeling_utils import PreTrainedModel
Aymeric Augustin's avatar
Aymeric Augustin committed
32

thomwolf's avatar
thomwolf committed
33
34
35

logger = logging.getLogger(__name__)

36
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP = {
37
    "transfo-xl-wt103": "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-pytorch_model.bin",
38
}
39

40

41
42
43
44
45
def build_tf_to_pytorch_map(model, config):
    """ A map of modules from TF to PyTorch.
        This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.
    """
    tf_to_pt_map = {}
46

47
    if hasattr(model, "transformer"):
48
        # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
49
50
51
52
53
54
55
56
57
        tf_to_pt_map.update(
            {
                "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
                "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias,
            }
        )
        for i, (out_l, proj_l, tie_proj) in enumerate(
            zip(model.crit.out_layers, model.crit.out_projs, config.tie_projs)
        ):
58
59
            layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i
            if config.tie_weight:
60
                tf_to_pt_map.update({layer_str + "b": out_l.bias})
61
62
63
            else:
                raise NotImplementedError
                # I don't think this is implemented in the TF code
64
                tf_to_pt_map.update({layer_str + "lookup_table": out_l.weight, layer_str + "b": out_l.bias})
65
            if not tie_proj:
66
                tf_to_pt_map.update({layer_str + "proj": proj_l})
67
68
69
        # Now load the rest of the transformer
        model = model.transformer

thomwolf's avatar
thomwolf committed
70
    # Embeddings
71
72
    for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
        layer_str = "transformer/adaptive_embed/cutoff_%d/" % i
73
        tf_to_pt_map.update({layer_str + "lookup_table": embed_l.weight, layer_str + "proj_W": proj_l})
74
75
76
77

    # Transformer blocks
    for i, b in enumerate(model.layers):
        layer_str = "transformer/layer_%d/" % i
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        tf_to_pt_map.update(
            {
                layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
                layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
                layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
                layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
                layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
                layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
                layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
                layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
                layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
                layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
                layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
            }
        )
93
94
95
96
97
98
99
100
101
102
103

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        for b in model.layers:
            r_r_list.append(b.dec_attn.r_r_bias)
            r_w_list.append(b.dec_attn.r_w_bias)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
104
    tf_to_pt_map.update({"transformer/r_r_bias": r_r_list, "transformer/r_w_bias": r_w_list})
105
106
    return tf_to_pt_map

107

108
109
110
def load_tf_weights_in_transfo_xl(model, config, tf_path):
    """ Load tf checkpoints in a pytorch model
    """
111
112
113
    try:
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
114
    except ImportError:
115
116
117
118
        logger.error(
            "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
119
        raise
120
121
122
123
124
125
126
    # Build TF to PyTorch weights loading map
    tf_to_pt_map = build_tf_to_pytorch_map(model, config)

    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    tf_weights = {}
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
127
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
128
129
130
131
132
133
134
135
        array = tf.train.load_variable(tf_path, name)
        tf_weights[name] = array

    for name, pointer in tf_to_pt_map.items():
        assert name in tf_weights
        array = tf_weights[name]
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
136
        if "kernel" in name or "proj" in name:
137
            array = np.transpose(array)
138
        if ("r_r_bias" in name or "r_w_bias" in name) and len(pointer) > 1:
139
140
141
142
143
144
145
146
147
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
148
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
149
150
151
152
153
154
155
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
156
            logger.info("Initialize PyTorch weight {}".format(name))
157
158
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
159
160
        tf_weights.pop(name + "/Adam", None)
        tf_weights.pop(name + "/Adam_1", None)
161

162
    logger.info("Weights not copied to PyTorch model: {}".format(", ".join(tf_weights.keys())))
163
164
165
    return model


thomwolf's avatar
thomwolf committed
166
167
class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
Julien Chaumond's avatar
Julien Chaumond committed
168
        super().__init__()
thomwolf's avatar
thomwolf committed
169
170
171
172

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
173
        self.register_buffer("inv_freq", inv_freq)
thomwolf's avatar
thomwolf committed
174
175
176
177
178
179

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
180
            return pos_emb[:, None, :].expand(-1, bsz, -1)
thomwolf's avatar
thomwolf committed
181
        else:
182
            return pos_emb[:, None, :]
thomwolf's avatar
thomwolf committed
183

thomwolf's avatar
thomwolf committed
184

thomwolf's avatar
thomwolf committed
185
class PositionwiseFF(nn.Module):
186
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5):
Julien Chaumond's avatar
Julien Chaumond committed
187
        super().__init__()
thomwolf's avatar
thomwolf committed
188
189
190
191
192
193

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.CoreNet = nn.Sequential(
194
195
            nn.Linear(d_model, d_inner),
            nn.ReLU(inplace=True),
thomwolf's avatar
thomwolf committed
196
197
198
199
200
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

201
        self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
202
203
204
205
206

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
207
            # layer normalization + positionwise feed-forward
thomwolf's avatar
thomwolf committed
208
209
            core_out = self.CoreNet(self.layer_norm(inp))

210
            # residual connection
thomwolf's avatar
thomwolf committed
211
212
            output = core_out + inp
        else:
213
            # positionwise feed-forward
thomwolf's avatar
thomwolf committed
214
215
            core_out = self.CoreNet(inp)

216
            # residual connection + layer normalization
thomwolf's avatar
thomwolf committed
217
218
219
220
            output = self.layer_norm(inp + core_out)

        return output

thomwolf's avatar
thomwolf committed
221

222
class RelPartialLearnableMultiHeadAttn(nn.Module):
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    def __init__(
        self,
        n_head,
        d_model,
        d_head,
        dropout,
        dropatt=0,
        tgt_len=None,
        ext_len=None,
        mem_len=None,
        pre_lnorm=False,
        r_r_bias=None,
        r_w_bias=None,
        output_attentions=False,
        layer_norm_epsilon=1e-5,
    ):
Julien Chaumond's avatar
Julien Chaumond committed
239
        super().__init__()
thomwolf's avatar
thomwolf committed
240

thomwolf's avatar
thomwolf committed
241
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
248
249
250
251
252
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

253
        self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
254
255
256
257
258

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

259
        if r_r_bias is None or r_w_bias is None:  # Biases are not shared
thomwolf's avatar
thomwolf committed
260
261
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
262
263
264
265
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

266
        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)
thomwolf's avatar
thomwolf committed
267

268
    def _rel_shift(self, x):
thomwolf's avatar
thomwolf committed
269
270
        zero_pad_shape = (x.size(0), 1) + x.size()[2:]
        zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
thomwolf's avatar
thomwolf committed
271
272
        x_padded = torch.cat([zero_pad, x], dim=1)

thomwolf's avatar
thomwolf committed
273
274
        x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
        x_padded = x_padded.view(*x_padded_shape)
thomwolf's avatar
thomwolf committed
275
276
277
278
279

        x = x_padded[1:].view_as(x)

        return x

thomwolf's avatar
thomwolf committed
280
    def forward(self, w, r, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

304
305
306
        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)  # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)  # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)  # qlen x bsz x n_head x d_head
thomwolf's avatar
thomwolf committed
307

308
        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)  # qlen x n_head x d_head
thomwolf's avatar
thomwolf committed
309

310
        # compute attention score
311
312
        rw_head_q = w_head_q + self.r_w_bias  # qlen x bsz x n_head x d_head
        AC = torch.einsum("ibnd,jbnd->ijbn", (rw_head_q, w_head_k))  # qlen x klen x bsz x n_head
thomwolf's avatar
thomwolf committed
313

thomwolf's avatar
thomwolf committed
314
        rr_head_q = w_head_q + self.r_r_bias
315
        BD = torch.einsum("ibnd,jnd->ijbn", (rr_head_q, r_head_k))  # qlen x klen x bsz x n_head
thomwolf's avatar
thomwolf committed
316
317
318
319
320
321
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

322
        # compute attention probability
323
        if attn_mask is not None and torch.sum(attn_mask).item():
324
            attn_mask = attn_mask == 1  # Switch to bool
thomwolf's avatar
thomwolf committed
325
            if attn_mask.dim() == 2:
326
                if next(self.parameters()).dtype == torch.float16:
327
328
329
                    attn_score = (
                        attn_score.float().masked_fill(attn_mask[None, :, :, None], -65000).type_as(attn_score)
                    )
330
                else:
331
                    attn_score = attn_score.float().masked_fill(attn_mask[None, :, :, None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
332
            elif attn_mask.dim() == 3:
333
                if next(self.parameters()).dtype == torch.float16:
334
                    attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], -65000).type_as(attn_score)
335
                else:
336
                    attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
337
338
339
340
341

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
342
343
344
345
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

346
        # compute attention vector
347
        attn_vec = torch.einsum("ijbn,jbnd->ibnd", (attn_prob, w_head_v))
thomwolf's avatar
thomwolf committed
348
349

        # [qlen x bsz x n_head x d_head]
350
        attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)
thomwolf's avatar
thomwolf committed
351

352
        # linear projection
thomwolf's avatar
thomwolf committed
353
354
355
356
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
357
            # residual connection
thomwolf's avatar
thomwolf committed
358
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
359
        else:
360
            # residual connection + layer normalization
thomwolf's avatar
thomwolf committed
361
            outputs = [self.layer_norm(w + attn_out)]
thomwolf's avatar
thomwolf committed
362

thomwolf's avatar
thomwolf committed
363
364
365
366
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
367
368
369


class RelPartialLearnableDecoderLayer(nn.Module):
370
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
371
        super().__init__()
thomwolf's avatar
thomwolf committed
372

373
374
375
376
377
378
        self.dec_attn = RelPartialLearnableMultiHeadAttn(
            n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs
        )
        self.pos_ff = PositionwiseFF(
            d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm"), layer_norm_epsilon=layer_norm_epsilon
        )
thomwolf's avatar
thomwolf committed
379

thomwolf's avatar
thomwolf committed
380
    def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
381

382
        attn_outputs = self.dec_attn(dec_inp, r, attn_mask=dec_attn_mask, mems=mems, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
383
384
385
386
387
        ff_output = self.pos_ff(attn_outputs[0])

        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
388
389
390


class AdaptiveEmbedding(nn.Module):
391
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False):
Julien Chaumond's avatar
Julien Chaumond committed
392
        super().__init__()
thomwolf's avatar
thomwolf committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
408
            self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0))
thomwolf's avatar
thomwolf committed
409
            if d_proj != d_embed:
thomwolf's avatar
thomwolf committed
410
                self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
thomwolf's avatar
thomwolf committed
411
412
        else:
            for i in range(len(self.cutoffs)):
413
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
thomwolf's avatar
thomwolf committed
414
                d_emb_i = d_embed // (div_val ** i)
415
                self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i))
thomwolf's avatar
thomwolf committed
416
                self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
thomwolf's avatar
thomwolf committed
417
418
419
420
421

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
422
                embed = F.linear(embed, self.emb_projs[0])
thomwolf's avatar
thomwolf committed
423
424
425
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
426
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device)
thomwolf's avatar
thomwolf committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

thomwolf's avatar
thomwolf committed
442
443
            embed_shape = inp.size() + (self.d_proj,)
            embed = emb_flat.view(embed_shape)
thomwolf's avatar
thomwolf committed
444
445
446
447
448
449

        embed.mul_(self.emb_scale)

        return embed


450
class TransfoXLPreTrainedModel(PreTrainedModel):
451
    """ An abstract class to handle weights initialization and
452
        a simple interface for downloading and loading pretrained models.
453
    """
454

455
    config_class = TransfoXLConfig
456
    pretrained_model_archive_map = TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
457
458
459
460
    load_tf_weights = load_tf_weights_in_transfo_xl
    base_model_prefix = "transformer"

    def _init_weight(self, weight):
461
        if self.config.init == "uniform":
462
            nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
463
        elif self.config.init == "normal":
464
            nn.init.normal_(weight, 0.0, self.config.init_std)
thomwolf's avatar
thomwolf committed
465

466
    def _init_bias(self, bias):
467
468
        nn.init.constant_(bias, 0.0)

469
    def _init_weights(self, m):
470
471
472
        """ Initialize the weights.
        """
        classname = m.__class__.__name__
473
474
        if classname.find("Linear") != -1:
            if hasattr(m, "weight") and m.weight is not None:
475
                self._init_weight(m.weight)
476
            if hasattr(m, "bias") and m.bias is not None:
477
                self._init_bias(m.bias)
478
479
        elif classname.find("AdaptiveEmbedding") != -1:
            if hasattr(m, "emb_projs"):
480
481
482
                for i in range(len(m.emb_projs)):
                    if m.emb_projs[i] is not None:
                        nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
483
484
        elif classname.find("Embedding") != -1:
            if hasattr(m, "weight"):
485
                self._init_weight(m.weight)
486
487
        elif classname.find("ProjectedAdaptiveLogSoftmax") != -1:
            if hasattr(m, "cluster_weight") and m.cluster_weight is not None:
488
                self._init_weight(m.cluster_weight)
489
            if hasattr(m, "cluster_bias") and m.cluster_bias is not None:
490
                self._init_bias(m.cluster_bias)
491
            if hasattr(m, "out_projs"):
492
493
494
                for i in range(len(m.out_projs)):
                    if m.out_projs[i] is not None:
                        nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
495
496
        elif classname.find("LayerNorm") != -1:
            if hasattr(m, "weight"):
497
                nn.init.normal_(m.weight, 1.0, self.config.init_std)
498
            if hasattr(m, "bias") and m.bias is not None:
499
                self._init_bias(m.bias)
500
        else:
501
            if hasattr(m, "r_emb"):
502
                self._init_weight(m.r_emb)
503
            if hasattr(m, "r_w_bias"):
504
                self._init_weight(m.r_w_bias)
505
            if hasattr(m, "r_r_bias"):
506
                self._init_weight(m.r_r_bias)
507
            if hasattr(m, "r_bias"):
508
                self._init_bias(m.r_bias)
thomwolf's avatar
thomwolf committed
509

510

Lysandre's avatar
Lysandre committed
511
TRANSFO_XL_START_DOCSTRING = r"""
thomwolf's avatar
thomwolf committed
512

Lysandre's avatar
Lysandre committed
513
514
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
Lysandre's avatar
Lysandre committed
515
    usage and behavior.
516

thomwolf's avatar
thomwolf committed
517
    Parameters:
518
        config (:class:`~transformers.TransfoXLConfig`): Model configuration class with all the parameters of the model.
519
            Initializing with a config file does not load the weights associated with the model, only the configuration.
520
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
521
"""
thomwolf's avatar
thomwolf committed
522

thomwolf's avatar
thomwolf committed
523
TRANSFO_XL_INPUTS_DOCSTRING = r"""
Lysandre's avatar
Lysandre committed
524
525
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Lysandre's avatar
Lysandre committed
526
527
            Indices of input sequence tokens in the vocabulary.

528
529
            Indices can be obtained using :class:`transformers.TransfoXLTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
Lysandre's avatar
Lysandre committed
530
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.
Lysandre's avatar
Lysandre committed
531

Lysandre's avatar
Lysandre committed
532
533
534
535
536
537
            `What are input IDs? <../glossary.html#input-ids>`__
        mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
            Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems
            given to this model should not be passed as input ids as they have already been computed.
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
538
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
539
            Mask values selected in ``[0, 1]``:
Lysandre's avatar
Lysandre committed
540
541
542
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
        input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
543
544
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
thomwolf's avatar
thomwolf committed
545
"""
546

547
548
549
550
551

@add_start_docstrings(
    "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
    TRANSFO_XL_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
552
class TransfoXLModel(TransfoXLPreTrainedModel):
553
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
554
        super().__init__(config)
thomwolf's avatar
thomwolf committed
555
556
557
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
558
        self.n_token = config.vocab_size
559
560
561
562
563
564

        self.d_embed = config.d_embed
        self.d_model = config.d_model
        self.n_head = config.n_head
        self.d_head = config.d_head

565
566
567
        self.word_emb = AdaptiveEmbedding(
            config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val
        )
thomwolf's avatar
thomwolf committed
568

569
        self.drop = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
570

571
572
573
574
575
576
577
578
579
580
        self.n_layer = config.n_layer

        self.tgt_len = config.tgt_len
        self.mem_len = config.mem_len
        self.ext_len = config.ext_len
        self.max_klen = config.tgt_len + config.ext_len + config.mem_len

        self.attn_type = config.attn_type

        if not config.untie_r:
thomwolf's avatar
thomwolf committed
581
582
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
583

thomwolf's avatar
thomwolf committed
584
        self.layers = nn.ModuleList()
585
        if config.attn_type == 0:  # the default attention
586
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
587
588
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
589
590
591
592
593
594
595
596
597
598
                        config.n_head,
                        config.d_model,
                        config.d_head,
                        config.d_inner,
                        config.dropout,
                        tgt_len=config.tgt_len,
                        ext_len=config.ext_len,
                        mem_len=config.mem_len,
                        dropatt=config.dropatt,
                        pre_lnorm=config.pre_lnorm,
599
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
600
                        r_r_bias=None if config.untie_r else self.r_r_bias,
601
                        output_attentions=self.output_attentions,
602
603
                        layer_norm_epsilon=config.layer_norm_epsilon,
                    )
thomwolf's avatar
thomwolf committed
604
                )
605
        else:  # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints
606
            raise NotImplementedError  # Removed them to avoid maintaining dead code
thomwolf's avatar
thomwolf committed
607

608
609
        self.same_length = config.same_length
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
610

611
        if self.attn_type == 0:  # default attention
thomwolf's avatar
thomwolf committed
612
            self.pos_emb = PositionalEmbedding(self.d_model)
613
        else:  # learnable embeddings and absolute embeddings
614
            raise NotImplementedError  # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
thomwolf's avatar
thomwolf committed
615

616
        self.init_weights()
thomwolf's avatar
thomwolf committed
617

thomwolf's avatar
thomwolf committed
618
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
619
        return self.word_emb
thomwolf's avatar
thomwolf committed
620

thomwolf's avatar
thomwolf committed
621
    def set_input_embeddings(self, new_embeddings):
622
623
        self.word_emb = new_embeddings

thomwolf's avatar
thomwolf committed
624
625
626
    def backward_compatible(self):
        self.sample_softmax = -1

thomwolf's avatar
thomwolf committed
627
628
629
630
631
    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

thomwolf's avatar
thomwolf committed
632
633
634
635
    def _prune_heads(self, heads):
        logger.info("Head pruning is not implemented for Transformer-XL model")
        pass

636
    def init_mems(self, bsz):
thomwolf's avatar
thomwolf committed
637
638
639
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
640
            for i in range(self.n_layer):
641
                empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device)
thomwolf's avatar
thomwolf committed
642
643
644
645
646
647
                mems.append(empty)

            return mems
        else:
            return None

648
    def _update_mems(self, hids, mems, mlen, qlen):
thomwolf's avatar
thomwolf committed
649
        # does not deal with None
650
651
        if mems is None:
            return None
thomwolf's avatar
thomwolf committed
652
653

        # mems is not None
654
        assert len(hids) == len(mems), "len(hids) != len(mems)"
thomwolf's avatar
thomwolf committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

Lysandre's avatar
Lysandre committed
672
    @add_start_docstrings_to_callable(TRANSFO_XL_INPUTS_DOCSTRING)
673
    def forward(self, input_ids=None, mems=None, head_mask=None, inputs_embeds=None):
Lysandre's avatar
Lysandre committed
674
675
        r"""
    Return:
Lysandre's avatar
Fixes  
Lysandre committed
676
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.TransfoXLConfig`) and inputs:
Lysandre's avatar
Lysandre committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the last layer of the model.
        mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
697
698
699
        from transformers import TransfoXLTokenizer, TransfoXLModel
        import torch

Lysandre's avatar
Lysandre committed
700
701
702
703
704
705
706
        tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
        model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states, mems = outputs[:2]

        """
707
708
        # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
        # so we transpose here from shape [bsz, len] to shape [len, bsz]
709
710
711
712
713
714
715
716
717
718
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_ids = input_ids.transpose(0, 1).contiguous()
            qlen, bsz = input_ids.size()
        elif inputs_embeds is not None:
            inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
            qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")
719
720

        if mems is None:
721
            mems = self.init_mems(bsz)
thomwolf's avatar
thomwolf committed
722

thomwolf's avatar
thomwolf committed
723
724
725
726
727
728
729
730
731
732
733
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
734
735
736
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to fload if need + fp16 compatibility
thomwolf's avatar
thomwolf committed
737
738
739
        else:
            head_mask = [None] * self.n_layer

740
741
742
743
        if inputs_embeds is not None:
            word_emb = inputs_embeds
        else:
            word_emb = self.word_emb(input_ids)
thomwolf's avatar
thomwolf committed
744
745
746
747

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
thomwolf's avatar
thomwolf committed
748
            all_ones = word_emb.new_ones((qlen, klen), dtype=torch.uint8)
thomwolf's avatar
thomwolf committed
749
750
751
752
753
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
754
            dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None]  # -1
thomwolf's avatar
thomwolf committed
755
        else:
756
757
758
            dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.uint8), diagonal=1 + mlen)[
                :, :, None
            ]
thomwolf's avatar
thomwolf committed
759
760

        hids = []
thomwolf's avatar
thomwolf committed
761
        attentions = []
762
763
        if self.attn_type == 0:  # default
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=word_emb.dtype)
thomwolf's avatar
thomwolf committed
764
765
766
767
768
769
770
771
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            for i, layer in enumerate(self.layers):
772
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
773
                mems_i = None if mems is None else mems[i]
774
775
776
                layer_outputs = layer(
                    core_out, pos_emb, dec_attn_mask=dec_attn_mask, mems=mems_i, head_mask=head_mask[i]
                )
thomwolf's avatar
thomwolf committed
777
778
779
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
780
        else:  # learnable embeddings and absolute embeddings
781
            raise NotImplementedError  # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint
thomwolf's avatar
thomwolf committed
782
783
784
785
786

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

thomwolf's avatar
thomwolf committed
787
788
789
790
791
792
793
794
795
796
797
        # We transpose back here to shape [bsz, len, hidden_dim]
        outputs = [core_out.transpose(0, 1).contiguous(), new_mems]
        if self.output_hidden_states:
            # Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
            hids.append(core_out)
            hids = list(t.transpose(0, 1).contiguous() for t in hids)
            outputs.append(hids)
        if self.output_attentions:
            # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
            attentions = list(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
            outputs.append(attentions)
798

thomwolf's avatar
thomwolf committed
799
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
800
801


802
803
@add_start_docstrings(
    """The Transformer-XL Model with a language modeling head on top
thomwolf's avatar
thomwolf committed
804
    (adaptive softmax with weights tied to the adaptive input embeddings)""",
805
806
    TRANSFO_XL_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
807
808
class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
809
        super().__init__(config)
thomwolf's avatar
thomwolf committed
810
811
        self.transformer = TransfoXLModel(config)
        self.sample_softmax = config.sample_softmax
812
813
814
815
816
817
818
819
820

        assert (
            self.sample_softmax <= 0
        ), "Sampling from the softmax is not implemented yet. Please look at issue: #3310: https://github.com/huggingface/transformers/issues/3310"

        self.crit = ProjectedAdaptiveLogSoftmax(
            config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val
        )

821
        self.init_weights()
thomwolf's avatar
thomwolf committed
822
823

    def tie_weights(self):
824
825
826
        """
        Run this to be sure output and input (adaptive) softmax weights are tied
        """
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

        if self.config.tie_weight:
            for i in range(len(self.crit.out_layers)):
                self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i])
        if self.config.tie_projs:
            for i, tie_proj in enumerate(self.config.tie_projs):
                if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
                    if self.config.torchscript:
                        self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone())
                    else:
                        self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
                elif tie_proj and self.config.div_val != 1:
                    if self.config.torchscript:
                        self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone())
                    else:
                        self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
thomwolf's avatar
thomwolf committed
843
844
845
846

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.transformer.reset_length(tgt_len, ext_len, mem_len)

847
848
    def init_mems(self, bsz):
        return self.transformer.init_mems(bsz)
thomwolf's avatar
thomwolf committed
849

Lysandre's avatar
Lysandre committed
850
    @add_start_docstrings_to_callable(TRANSFO_XL_INPUTS_DOCSTRING)
851
    def forward(self, input_ids=None, mems=None, head_mask=None, inputs_embeds=None, labels=None):
Lysandre's avatar
Lysandre committed
852
853
854
855
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
Lysandre's avatar
Lysandre committed
856
857
            Indices are selected in ``[-100, 0, ..., config.vocab_size]``
            All labels set to ``-100`` are ignored (masked), the loss is only
Lysandre's avatar
Lysandre committed
858
859
860
            computed for labels in ``[0, ..., config.vocab_size]``

    Return:
Lysandre's avatar
Fixes  
Lysandre committed
861
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.TransfoXLConfig`) and inputs:
Lysandre's avatar
Lysandre committed
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when ``labels`` is provided)
            Language modeling loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        mems (:obj:`List[torch.FloatTensor]` of length :obj:`config.n_layers`):
            Contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
            should not be passed as input ids as they have already been computed.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
884
885
886
        from transformers import TransfoXLTokenizer, TransfoXLLMHeadModel
        import torch

Lysandre's avatar
Lysandre committed
887
888
889
890
891
892
893
        tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
        model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        prediction_scores, mems = outputs[:2]

        """
894
895
896
897
898
899
        if input_ids is not None:
            bsz, tgt_len = input_ids.size(0), input_ids.size(1)
        elif inputs_embeds is not None:
            bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1)
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")
thomwolf's avatar
thomwolf committed
900

901
        transformer_outputs = self.transformer(input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds)
thomwolf's avatar
thomwolf committed
902

thomwolf's avatar
thomwolf committed
903
        last_hidden = transformer_outputs[0]
904
        pred_hid = last_hidden[:, -tgt_len:]
thomwolf's avatar
thomwolf committed
905
        outputs = transformer_outputs[1:]
906
907
908
909

        softmax_output = self.crit(pred_hid.view(-1, pred_hid.size(-1)), labels)
        if labels is None:
            softmax_output = softmax_output.view(bsz, tgt_len, -1)
thomwolf's avatar
thomwolf committed
910
            outputs = [softmax_output] + outputs
thomwolf's avatar
thomwolf committed
911
        else:
912
913
            softmax_output = softmax_output.view(bsz, tgt_len)
            outputs = [softmax_output, None] + outputs
thomwolf's avatar
thomwolf committed
914

thomwolf's avatar
thomwolf committed
915
        return outputs  # (loss), logits or None if labels is not None (speed up adaptive softmax), new_mems, (all hidden states), (all attentions)
R茅mi Louf's avatar
R茅mi Louf committed
916
917
918
919
920
921
922
923

    def get_output_embeddings(self):
        """ Double-check if you are using adaptive softmax.
        """
        if self.sample_softmax > 0:
            return self.out_layer
        else:
            return self.crit.out_layers[-1]
924

925
    def prepare_inputs_for_generation(self, input_ids, past, **model_kwargs):
926
927
928
        inputs = {"input_ids": input_ids}

        # if past is defined in model kwargs then use it for faster decoding
929
930
        if past:
            inputs["mems"] = past
931
932

        return inputs