test_modeling_tf_transfo_xl.py 11.6 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import random
18
import unittest
Aymeric Augustin's avatar
Aymeric Augustin committed
19
20

from transformers import TransfoXLConfig, is_tf_available
21
from transformers.testing_utils import require_tf, slow
22

23
from .test_configuration_common import ConfigTester
24
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
25
26
27
28


if is_tf_available():
    import tensorflow as tf
29

30
31
32
33
34
35
    from transformers import (
        TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
        TFTransfoXLForSequenceClassification,
        TFTransfoXLLMHeadModel,
        TFTransfoXLModel,
    )
36
37


38
39
class TFTransfoXLModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
40
41
        self,
        parent,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.mem_len = 30
        self.key_length = self.seq_length + self.mem_len
        self.clamp_len = 15
        self.is_training = True
        self.use_labels = True
        self.vocab_size = 99
        self.cutoffs = [10, 50, 80]
        self.hidden_size = 32
        self.d_embed = 32
        self.num_attention_heads = 4
        self.d_head = 8
        self.d_inner = 128
        self.div_val = 2
        self.num_hidden_layers = 5
        self.scope = None
        self.seed = 1
        self.eos_token_id = 0
63
64
65
        self.num_labels = 3
        self.pad_token_id = self.vocab_size - 1
        self.init_range = 0.01
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    def prepare_config_and_inputs(self):
        input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        lm_labels = None
        if self.use_labels:
            lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = TransfoXLConfig(
            vocab_size=self.vocab_size,
            mem_len=self.mem_len,
            clamp_len=self.clamp_len,
            cutoffs=self.cutoffs,
            d_model=self.hidden_size,
            d_embed=self.d_embed,
            n_head=self.num_attention_heads,
            d_head=self.d_head,
            d_inner=self.d_inner,
            div_val=self.div_val,
            n_layer=self.num_hidden_layers,
            eos_token_id=self.eos_token_id,
88
89
90
            pad_token_id=self.vocab_size - 1,
            init_range=self.init_range,
            num_labels=self.num_labels,
91
92
93
94
95
96
97
98
99
100
101
        )

        return (config, input_ids_1, input_ids_2, lm_labels)

    def set_seed(self):
        random.seed(self.seed)
        tf.random.set_seed(self.seed)

    def create_and_check_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
        model = TFTransfoXLModel(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
102
        hidden_states_1, mems_1 = model(input_ids_1).to_tuple()
103
104
105

        inputs = {"input_ids": input_ids_2, "mems": mems_1}

Sylvain Gugger's avatar
Sylvain Gugger committed
106
        hidden_states_2, mems_2 = model(inputs).to_tuple()
107

108
109
        self.parent.assertEqual(hidden_states_1.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(hidden_states_2.shape, (self.batch_size, self.seq_length, self.hidden_size))
110
        self.parent.assertListEqual(
111
112
            [mem.shape for mem in mems_1],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
113
114
        )
        self.parent.assertListEqual(
115
116
            [mem.shape for mem in mems_2],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
117
118
119
120
121
        )

    def create_and_check_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
        model = TFTransfoXLLMHeadModel(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
122
        lm_logits_1, mems_1 = model(input_ids_1).to_tuple()
123
124

        inputs = {"input_ids": input_ids_1, "labels": lm_labels}
Sylvain Gugger's avatar
Sylvain Gugger committed
125
        _, mems_1 = model(inputs).to_tuple()
126

Sylvain Gugger's avatar
Sylvain Gugger committed
127
        lm_logits_2, mems_2 = model([input_ids_2, mems_1]).to_tuple()
128
129
130

        inputs = {"input_ids": input_ids_1, "mems": mems_1, "labels": lm_labels}

Sylvain Gugger's avatar
Sylvain Gugger committed
131
        _, mems_2 = model(inputs).to_tuple()
132

133
        self.parent.assertEqual(lm_logits_1.shape, (self.batch_size, self.seq_length, self.vocab_size))
134
        self.parent.assertListEqual(
135
136
            [mem.shape for mem in mems_1],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
137
138
        )

139
        self.parent.assertEqual(lm_logits_2.shape, (self.batch_size, self.seq_length, self.vocab_size))
140
        self.parent.assertListEqual(
141
142
            [mem.shape for mem in mems_2],
            [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
143
144
        )

145
146
147
148
149
    def create_and_check_transfo_xl_for_sequence_classification(self, config, input_ids_1, input_ids_2, lm_labels):
        model = TFTransfoXLForSequenceClassification(config)
        result = model(input_ids_1)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

150
151
152
153
154
155
156
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids_1}
        return config, inputs_dict


157
@require_tf
158
class TFTransfoXLModelTest(TFModelTesterMixin, unittest.TestCase):
159

160
161
162
    all_model_classes = (
        (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
    )
163
164
    all_generative_model_classes = () if is_tf_available() else ()
    # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
165
    test_resize_embeddings = False
166
    test_head_masking = False
167
    test_onnx = False
168
    test_mismatched_shapes = False
169
170

    def setUp(self):
171
        self.model_tester = TFTransfoXLModelTester(self)
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_transfo_xl_model(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_transfo_xl_model(*config_and_inputs)

    def test_transfo_xl_lm_head(self):
        self.model_tester.set_seed()
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_transfo_xl_lm_head(*config_and_inputs)

187
188
189
190
    def test_transfo_xl_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*config_and_inputs)

191
192
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
193
        list_other_models_with_output_ebd = [TFTransfoXLForSequenceClassification]
194
195
196
197

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
198
199
200
201
202
203
204
205
206
207
            if model_class in list_other_models_with_output_ebd:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
208

Julien Plu's avatar
Julien Plu committed
209
210
211
212
    def test_xla_mode(self):
        # TODO JP: Make TransfoXL XLA compliant
        pass

213
    @slow
214
    def test_model_from_pretrained(self):
215
        for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
216
            model = TFTransfoXLModel.from_pretrained(model_name)
217
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
218
219


220
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
221
class TFTransfoXLModelLanguageGenerationTest(unittest.TestCase):
222
    @unittest.skip("Skip test until #12651 is resolved.")
patrickvonplaten's avatar
patrickvonplaten committed
223
224
225
    @slow
    def test_lm_generate_transfo_xl_wt103(self):
        model = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
226
227
228
        # fmt: off
        input_ids = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]],dtype=tf.int32)  # noqa: E231
        # fmt: on
patrickvonplaten's avatar
patrickvonplaten committed
229
230
231
232
233
234
235
236
237
238
239
        #  In 1991 , the remains of Russian Tsar Nicholas II and his family
        #  ( except for Alexei and Maria ) are discovered .
        #  The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
        #  remainder of the story . 1883 Western Siberia ,
        #  a young Grigori Rasputin is asked by his father and a group of men to perform magic .
        #  Rasputin has a vision and denounces one of the men as a horse thief . Although his
        #  father initially slaps him for making such an accusation , Rasputin watches as the
        #  man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
        #  the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
        #  with people , even a bishop , begging for his blessing . <eod> </s> <eos>

240
241
242
        # fmt: off
        expected_output_ids = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0]  # noqa: E231
        # fmt: on
patrickvonplaten's avatar
patrickvonplaten committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
        #  In 1991, the remains of Russian Tsar Nicholas II and his family (
        #  except for Alexei and Maria ) are discovered. The voice of young son,
        #  Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
        #  1883 Western Siberia, a young Grigori Rasputin is asked by his father
        #  and a group of men to perform magic. Rasputin has a vision and
        #  denounces one of the men as a horse thief. Although his father initially
        #  slaps him for making such an accusation, Rasputin watches as the man
        #  is chased outside and beaten. Twenty years later, Rasputin sees a vision
        #  of the Virgin Mary, prompting him to become a priest.
        #  Rasputin quickly becomes famous, with people, even a bishop, begging for
        #  his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
        # Nicholas II and his family were discovered. The voice of <unk> young son,
        # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>

257
258
        output_ids = model.generate(input_ids, max_length=200, do_sample=False)
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)