test_processor_sam.py 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest

import numpy as np

20
21
22
23
24
25
26
27
from transformers.testing_utils import (
    is_pt_tf_cross_test,
    require_tf,
    require_torch,
    require_torchvision,
    require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
28
29
30
31
32
33
34


if is_vision_available():
    from PIL import Image

    from transformers import AutoProcessor, SamImageProcessor, SamProcessor

Arthur's avatar
Arthur committed
35
36
37
if is_torch_available():
    import torch

38
39
40
if is_tf_available():
    import tensorflow as tf

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

@require_vision
@require_torchvision
class SamProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        image_processor = SamImageProcessor()
        processor = SamProcessor(image_processor)
        processor.save_pretrained(self.tmpdirname)

    def get_image_processor(self, **kwargs):
        return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_additional_features(self):
        processor = SamProcessor(image_processor=self.get_image_processor())
        processor.save_pretrained(self.tmpdirname)

        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)

        processor = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=False, padding_value=1.0)

        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, SamImageProcessor)

    def test_image_processor(self):
        image_processor = self.get_image_processor()

        processor = SamProcessor(image_processor=image_processor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = image_processor(image_input, return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        input_feat_extract.pop("original_sizes")  # pop original_sizes as it is popped in the processor
        input_feat_extract.pop("reshaped_input_sizes")  # pop original_sizes as it is popped in the processor

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
Arthur's avatar
Arthur committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

    @require_torch
    def test_post_process_masks(self):
        image_processor = self.get_image_processor()

        processor = SamProcessor(image_processor=image_processor)
        dummy_masks = [torch.ones((1, 3, 5, 5))]

        original_sizes = [[1764, 2646]]

        reshaped_input_size = [[683, 1024]]
        masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size)
        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        masks = processor.post_process_masks(
            dummy_masks, torch.tensor(original_sizes), torch.tensor(reshaped_input_size)
        )
        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        # should also work with np
        dummy_masks = [np.ones((1, 3, 5, 5))]
        masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))

        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        dummy_masks = [[1, 0], [0, 1]]
        with self.assertRaises(ValueError):
            masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276


@require_vision
@require_tf
class TFSamProcessorTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        image_processor = SamImageProcessor()
        processor = SamProcessor(image_processor)
        processor.save_pretrained(self.tmpdirname)

    def get_image_processor(self, **kwargs):
        return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_additional_features(self):
        processor = SamProcessor(image_processor=self.get_image_processor())
        processor.save_pretrained(self.tmpdirname)

        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)

        processor = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=False, padding_value=1.0)

        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, SamImageProcessor)

    def test_image_processor(self):
        image_processor = self.get_image_processor()

        processor = SamProcessor(image_processor=image_processor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = image_processor(image_input, return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        input_feat_extract.pop("original_sizes")  # pop original_sizes as it is popped in the processor
        input_feat_extract.pop("reshaped_input_sizes")  # pop reshaped_input_sizes as it is popped in the processor

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)

    @require_tf
    def test_post_process_masks(self):
        image_processor = self.get_image_processor()

        processor = SamProcessor(image_processor=image_processor)
        dummy_masks = [tf.ones((1, 3, 5, 5))]

        original_sizes = [[1764, 2646]]

        reshaped_input_size = [[683, 1024]]
        masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size, return_tensors="tf")
        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        masks = processor.post_process_masks(
            dummy_masks,
            tf.convert_to_tensor(original_sizes),
            tf.convert_to_tensor(reshaped_input_size),
            return_tensors="tf",
        )
        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        # should also work with np
        dummy_masks = [np.ones((1, 3, 5, 5))]
        masks = processor.post_process_masks(
            dummy_masks, np.array(original_sizes), np.array(reshaped_input_size), return_tensors="tf"
        )

        self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))

        dummy_masks = [[1, 0], [0, 1]]
        with self.assertRaises(tf.errors.InvalidArgumentError):
            masks = processor.post_process_masks(
                dummy_masks, np.array(original_sizes), np.array(reshaped_input_size), return_tensors="tf"
            )


@require_vision
@require_torchvision
class SamProcessorEquivalenceTest(unittest.TestCase):
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
        image_processor = SamImageProcessor()
        processor = SamProcessor(image_processor)
        processor.save_pretrained(self.tmpdirname)

    def get_image_processor(self, **kwargs):
        return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    @is_pt_tf_cross_test
    def test_post_process_masks_equivalence(self):
        image_processor = self.get_image_processor()

        processor = SamProcessor(image_processor=image_processor)
        dummy_masks = np.random.randint(0, 2, size=(1, 3, 5, 5)).astype(np.float32)
        tf_dummy_masks = [tf.convert_to_tensor(dummy_masks)]
        pt_dummy_masks = [torch.tensor(dummy_masks)]

        original_sizes = [[1764, 2646]]

        reshaped_input_size = [[683, 1024]]
        tf_masks = processor.post_process_masks(
            tf_dummy_masks, original_sizes, reshaped_input_size, return_tensors="tf"
        )
        pt_masks = processor.post_process_masks(
            pt_dummy_masks, original_sizes, reshaped_input_size, return_tensors="pt"
        )

        self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy()))

    @is_pt_tf_cross_test
    def test_image_processor_equivalence(self):
        image_processor = self.get_image_processor()

        processor = SamProcessor(image_processor=image_processor)

        image_input = self.prepare_image_inputs()

        pt_input_feat_extract = image_processor(image_input, return_tensors="pt")["pixel_values"].numpy()
        pt_input_processor = processor(images=image_input, return_tensors="pt")["pixel_values"].numpy()

        tf_input_feat_extract = image_processor(image_input, return_tensors="tf")["pixel_values"].numpy()
        tf_input_processor = processor(images=image_input, return_tensors="tf")["pixel_values"].numpy()

        self.assertTrue(np.allclose(pt_input_feat_extract, pt_input_processor))
        self.assertTrue(np.allclose(pt_input_feat_extract, tf_input_feat_extract))
        self.assertTrue(np.allclose(pt_input_feat_extract, tf_input_processor))