test_modeling_encoder_decoder.py 29.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import tempfile
import unittest

from transformers import is_torch_available
21
from transformers.testing_utils import require_torch, slow, torch_device
22

23
from .test_modeling_bert import BertModelTester
24
from .test_modeling_bert_generation import BertGenerationEncoderTester
25
from .test_modeling_common import ids_tensor
26
from .test_modeling_gpt2 import GPT2ModelTester
27
from .test_modeling_roberta import RobertaModelTester
28
29
30


if is_torch_available():
31
32
33
    import numpy as np
    import torch

34
    from transformers import (
35
36
37
        AutoTokenizer,
        BertGenerationDecoder,
        BertGenerationEncoder,
38
        BertLMHeadModel,
39
        BertModel,
40
        BertTokenizer,
41
42
        EncoderDecoderConfig,
        EncoderDecoderModel,
43
        GPT2LMHeadModel,
44
        RobertaForCausalLM,
45
        RobertaModel,
46
    )
47
48
49


@require_torch
50
51
52
class EncoderDecoderMixin:
    def get_encoder_decoder_model(self, config, decoder_config):
        pass
53

54
55
56
57
58
    def prepare_config_and_inputs(self):
        pass

    def get_pretrained_model(self):
        pass
59

60
    def check_encoder_decoder_model_from_pretrained_configs(
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
        encoder_decoder_config = EncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
        self.assertTrue(encoder_decoder_config.decoder.is_decoder)

        enc_dec_model = EncoderDecoderModel(encoder_decoder_config)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()

        self.assertTrue(enc_dec_model.config.is_encoder_decoder)

        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))

90
    def check_encoder_decoder_model(
91
92
93
94
95
96
97
98
99
100
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
101
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
102
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
103
        self.assertTrue(enc_dec_model.config.decoder.is_decoder)
104
        self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
105
        self.assertTrue(enc_dec_model.config.is_encoder_decoder)
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
        encoder_outputs = (encoder_hidden_states,)
        outputs_encoder_decoder = enc_dec_model(
            encoder_outputs=encoder_outputs,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))

127
    def check_encoder_decoder_model_from_pretrained(
128
129
130
131
132
133
134
135
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
136
        return_dict,
137
138
        **kwargs
    ):
139
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
140
        kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
141
142
143
144
145
146
147
148
149
150
151
152
        enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))

153
    def check_save_and_load(
154
155
156
157
158
159
160
161
162
163
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
164
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmpdirname:
                enc_dec_model.save_pretrained(tmpdirname)
                EncoderDecoderModel.from_pretrained(tmpdirname)

                after_outputs = enc_dec_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

193
    def check_save_and_load_encoder_decoder_model(
194
195
196
197
198
199
200
201
202
203
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        **kwargs
    ):
204
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        enc_dec_model.eval()
        with torch.no_grad():
            outputs = enc_dec_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
                enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
                enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
                EncoderDecoderModel.from_encoder_decoder_pretrained(
                    encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
                    decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
                )

                after_outputs = enc_dec_model(
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
                    decoder_attention_mask=decoder_attention_mask,
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)

237
    def check_encoder_decoder_model_labels(
238
239
240
241
242
243
244
245
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
246
        labels,
247
248
        **kwargs
    ):
249
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
250
251
252
253
254
255
256
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)
        outputs_encoder_decoder = enc_dec_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
Sylvain Gugger's avatar
Sylvain Gugger committed
257
            labels=labels,
258
259
260
261
262
263
264
265
266
        )

        mlm_loss = outputs_encoder_decoder[0]
        # check that backprop works
        mlm_loss.backward()

        self.assertEqual(outputs_encoder_decoder[1].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
        self.assertEqual(outputs_encoder_decoder[2].shape, (input_ids.shape + (config.hidden_size,)))

267
268
    def check_encoder_decoder_model_generate(self, input_ids, config, decoder_config, **kwargs):
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
269
270
271
272
273
274
275
276
277
        enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        enc_dec_model.to(torch_device)

        # Bert does not have a bos token id, so use pad_token_id instead
        generated_output = enc_dec_model.generate(
            input_ids, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
        )
        self.assertEqual(generated_output.shape, (input_ids.shape[0],) + (decoder_config.max_length,))

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    def create_and_check_encoder_decoder_shared_weights(
        self,
        config,
        input_ids,
        attention_mask,
        encoder_hidden_states,
        decoder_config,
        decoder_input_ids,
        decoder_attention_mask,
        labels,
        **kwargs
    ):
        torch.manual_seed(0)
        encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
        model.to(torch_device)
        model.eval()
        # load state dict copies weights but does not tie them
        decoder_state_dict = model.decoder._modules[model.decoder.base_model_prefix].state_dict()
        model.encoder.load_state_dict(decoder_state_dict, strict=False)

        torch.manual_seed(0)
        tied_encoder_model, tied_decoder_model = self.get_encoder_decoder_model(config, decoder_config)
        config = EncoderDecoderConfig.from_encoder_decoder_configs(
            tied_encoder_model.config, tied_decoder_model.config, tie_encoder_decoder=True
        )
        tied_model = EncoderDecoderModel(encoder=tied_encoder_model, decoder=tied_decoder_model, config=config)
        tied_model.to(torch_device)
        tied_model.eval()

        model_result = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        tied_model_result = tied_model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )

        # check that models has less parameters
        self.assertLess(sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters()))
        random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

        # check that outputs are equal
        self.assertTrue(
            torch.allclose(
                model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
            )
        )

        # check that outputs after saving and loading are equal
        with tempfile.TemporaryDirectory() as tmpdirname:
            tied_model.save_pretrained(tmpdirname)
            tied_model = EncoderDecoderModel.from_pretrained(tmpdirname)
            tied_model.to(torch_device)
            tied_model.eval()

            # check that models has less parameters
            self.assertLess(
                sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
            )
            random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()

            tied_model_result = tied_model(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )

            # check that outputs are equal
            self.assertTrue(
                torch.allclose(
                    model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
                )
            )

360
361
362
    def test_encoder_decoder_model(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model(**input_ids_dict)
363

364
365
366
    def test_encoder_decoder_model_from_pretrained_configs(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)
367

368
369
    def test_encoder_decoder_model_from_pretrained(self):
        input_ids_dict = self.prepare_config_and_inputs()
370
371
372
373
374
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)

    def test_encoder_decoder_model_from_pretrained_return_dict(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)
375
376

    def test_save_and_load_from_pretrained(self):
377
378
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load(**input_ids_dict)
379
380

    def test_save_and_load_from_encoder_decoder_pretrained(self):
381
382
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_save_and_load_encoder_decoder_model(**input_ids_dict)
383

384
385
386
    def test_encoder_decoder_model_labels(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_labels(**input_ids_dict)
387

388
389
390
    def test_encoder_decoder_model_generate(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.check_encoder_decoder_model_generate(**input_ids_dict)
391

392
393
394
395
    def test_encoder_decoder_model_shared_weights(self):
        input_ids_dict = self.prepare_config_and_inputs()
        self.create_and_check_encoder_decoder_shared_weights(**input_ids_dict)

396
    @slow
397
398
    def test_real_model_save_load_from_pretrained(self):
        model_2 = self.get_pretrained_model()
399
400
401
402
403
        model_2.to(torch_device)
        input_ids = ids_tensor([13, 5], model_2.config.encoder.vocab_size)
        decoder_input_ids = ids_tensor([13, 1], model_2.config.encoder.vocab_size)
        attention_mask = ids_tensor([13, 5], vocab_size=2)
        with torch.no_grad():
Lysandre's avatar
Lysandre committed
404
405
406
407
408
            outputs = model_2(
                input_ids=input_ids,
                decoder_input_ids=decoder_input_ids,
                attention_mask=attention_mask,
            )
409
410
411
412
413
414
415
416
417
            out_2 = outputs[0].cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            with tempfile.TemporaryDirectory() as tmp_dirname:
                model_2.save_pretrained(tmp_dirname)
                model_1 = EncoderDecoderModel.from_pretrained(tmp_dirname)
                model_1.to(torch_device)

                after_outputs = model_1(
Lysandre's avatar
Lysandre committed
418
419
420
                    input_ids=input_ids,
                    decoder_input_ids=decoder_input_ids,
                    attention_mask=attention_mask,
421
422
423
424
425
                )
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478


class BertEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "bert-base-cased")

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = BertLMHeadModel(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = BertModelTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    @slow
    def test_bert2bert_summarization(self):
        model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
        model.to(torch_device)
        tokenizer = BertTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")

        ARTICLE = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David Boren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 1856, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confederate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking full membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on the fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more involved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members allegedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a fraternity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity,' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloyd's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing incidents."""

        EXPECTED_SUMMARY = """sae was founded in 1856, five years before the civil war. the fraternity has had to work hard to change recently. the university of oklahoma president says the university's affiliation with the fraternity is permanently done. the sae has had a string of members in recent months."""

        input_ids = tokenizer(ARTICLE, return_tensors="pt").input_ids.to(torch_device)
        output_ids = model.generate(input_ids)
        summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        self.assertEqual(summary, EXPECTED_SUMMARY)

495

Patrick von Platen's avatar
Patrick von Platen committed
496
class BertGenerationEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained(
            "google/bert_for_seq_generation_L-24_bbc_encoder", "google/bert_for_seq_generation_L-24_bbc_encoder"
        )

    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertGenerationEncoder(config)
        decoder_model = BertGenerationDecoder(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = BertGenerationEncoderTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            input_mask,
            token_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_input_mask,
            decoder_token_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_token_labels": decoder_token_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    @slow
    def test_roberta2roberta_summarization(self):
        model = EncoderDecoderModel.from_pretrained("google/roberta2roberta_L-24_bbc")
        model.to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_bbc")

        ARTICLE = """The problem is affecting people using the older versions of the PlayStation 3, called the "Fat" model.The problem isn't affecting the newer PS3 Slim systems that have been on sale since September last year.Sony have also said they are aiming to have the problem fixed shortly but is advising some users to avoid using their console for the time being."We hope to resolve this problem within the next 24 hours," a statement reads. "In the meantime, if you have a model other than the new slim PS3, we advise that you do not use your PS3 system, as doing so may result in errors in some functionality, such as recording obtained trophies, and not being able to restore certain data."We believe we have identified that this problem is being caused by a bug in the clock functionality incorporated in the system."The PlayStation Network is used by millions of people around the world.It allows users to play their friends at games like Fifa over the internet and also do things like download software or visit online stores."""

        EXPECTED_SUMMARY = """Sony has said that a bug in its PlayStation 3 console is preventing them from using the machine as a computer."""

        input_ids = tokenizer(ARTICLE, return_tensors="pt").input_ids.to(torch_device)
        output_ids = model.generate(input_ids)
        summary = tokenizer.decode(output_ids[0], skip_special_tokens=True)

        self.assertEqual(summary, EXPECTED_SUMMARY)


557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
class RoBertaEncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = RobertaModel(config)
        decoder_model = RobertaForCausalLM(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester = RobertaModelTester(self)
        encoder_config_and_inputs = model_tester.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_token_type_ids,
            decoder_input_mask,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("roberta-base", "roberta-base")
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662


class GPT2EncoderDecoderModelTest(EncoderDecoderMixin, unittest.TestCase):
    def get_encoder_decoder_model(self, config, decoder_config):
        encoder_model = BertModel(config)
        decoder_model = GPT2LMHeadModel(decoder_config)
        return encoder_model, decoder_model

    def prepare_config_and_inputs(self):
        model_tester_encoder = BertModelTester(self, batch_size=13)
        model_tester_decoder = GPT2ModelTester(self, batch_size=13)
        encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
        decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs_for_decoder()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = encoder_config_and_inputs
        (
            decoder_config,
            decoder_input_ids,
            decoder_input_mask,
            decoder_head_mask,
            decoder_token_type_ids,
            decoder_sequence_labels,
            decoder_token_labels,
            decoder_choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = decoder_config_and_inputs

        # make sure that cross attention layers are added
        decoder_config.add_cross_attention = True
        #  disable cache for now
        decoder_config.use_cache = False
        return {
            "config": config,
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "decoder_config": decoder_config,
            "decoder_input_ids": decoder_input_ids,
            "decoder_token_type_ids": decoder_token_type_ids,
            "decoder_attention_mask": decoder_input_mask,
            "decoder_sequence_labels": decoder_sequence_labels,
            "decoder_token_labels": decoder_token_labels,
            "decoder_choice_labels": decoder_choice_labels,
            "encoder_hidden_states": encoder_hidden_states,
            "labels": decoder_token_labels,
        }

    def get_pretrained_model(self):
        return EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2")
663
664
665

    def test_encoder_decoder_model_shared_weights(self):
        pass