semantic_segmentation.mdx 13.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Semantic segmentation

[[open-in-colab]]

<Youtube id="dKE8SIt9C-w"/>

Semantic segmentation assigns a label or class to each individual pixel of an image. There are several types of segmentation, and in the case of semantic segmentation, no distinction is made between unique instances of the same object. Both objects are given the same label (for example, "car" instead of "car-1" and "car-2"). Common real-world applications of semantic segmentation include training self-driving cars to identify pedestrians and important traffic information, identifying cells and abnormalities in medical imagery, and monitoring environmental changes from satellite imagery.

21
22
23
24
This guide will show you how to:

1. Finetune [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) on the [SceneParse150](https://huggingface.co/datasets/scene_parse_150) dataset.
2. Use your finetuned model for inference.
25
26
27
28
29
30
31
32
33
34
35
36
37

<Tip>

See the image segmentation [task page](https://huggingface.co/tasks/image-segmentation) for more information about its associated models, datasets, and metrics.

</Tip>

Before you begin, make sure you have all the necessary libraries installed:

```bash
pip install -q datasets transformers evaluate
```

38
39
40
41
42
43
44
45
We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:

```py
>>> from huggingface_hub import notebook_login

>>> notebook_login()
```

46
47
## Load SceneParse150 dataset

48
Start by loading a smaller subset of the SceneParse150 dataset from the 馃 Datasets library. This'll give you a chance to experiment and make sure everythings works before spending more time training on the full dataset.
49
50
51
52
53
54
55

```py
>>> from datasets import load_dataset

>>> ds = load_dataset("scene_parse_150", split="train[:50]")
```

56
Split the dataset's `train` split into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

```py
>>> ds = ds.train_test_split(test_size=0.2)
>>> train_ds = ds["train"]
>>> test_ds = ds["test"]
```

Then take a look at an example:

```py
>>> train_ds[0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>,
 'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>,
 'scene_category': 368}
```

73
74
75
- `image`: a PIL image of the scene.
- `annotation`: a PIL image of the segmentation map, which is also the model's target.
- `scene_category`: a category id that describes the image scene like "kitchen" or "office". In this guide, you'll only need `image` and `annotation`, both of which are PIL images.
76
77
78
79
80
81
82

You'll also want to create a dictionary that maps a label id to a label class which will be useful when you set up the model later. Download the mappings from the Hub and create the `id2label` and `label2id` dictionaries:

```py
>>> import json
>>> from huggingface_hub import cached_download, hf_hub_url

83
>>> repo_id = "huggingface/label-files"
84
>>> filename = "ade20k-id2label.json"
85
>>> id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r"))
86
87
88
89
90
91
92
>>> id2label = {int(k): v for k, v in id2label.items()}
>>> label2id = {v: k for k, v in id2label.items()}
>>> num_labels = len(id2label)
```

## Preprocess

93
The next step is to load a SegFormer image processor to prepare the images and annotations for the model. Some datasets, like this one, use the zero-index as the background class. However, the background class isn't actually included in the 150 classes, so you'll need to set `reduce_labels=True` to subtract one from all the labels. The zero-index is replaced by `255` so it's ignored by SegFormer's loss function:
94
95

```py
96
>>> from transformers import AutoImageProcessor
97

98
>>> feature_extractor = AutoImageProcessor.from_pretrained("nvidia/mit-b0", reduce_labels=True)
99
100
```

101
It is common to apply some data augmentations to an image dataset to make a model more robust against overfitting. In this guide, you'll use the [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) function from [torchvision](https://pytorch.org/vision/stable/index.html) to randomly change the color properties of an image, but you can also use any image library you like.
102
103
104
105
106
107
108

```py
>>> from torchvision.transforms import ColorJitter

>>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
```

109
Now create two preprocessing functions to prepare the images and annotations for the model. These functions convert the images into `pixel_values` and annotations to `labels`. For the training set, `jitter` is applied before providing the images to the image processor. For the test set, the image processor crops and normalizes the `images`, and only crops the `labels` because no data augmentation is applied during testing.
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

```py
>>> def train_transforms(example_batch):
...     images = [jitter(x) for x in example_batch["image"]]
...     labels = [x for x in example_batch["annotation"]]
...     inputs = feature_extractor(images, labels)
...     return inputs


>>> def val_transforms(example_batch):
...     images = [x for x in example_batch["image"]]
...     labels = [x for x in example_batch["annotation"]]
...     inputs = feature_extractor(images, labels)
...     return inputs
```

To apply the `jitter` over the entire dataset, use the 馃 Datasets [`~datasets.Dataset.set_transform`] function. The transform is applied on the fly which is faster and consumes less disk space:

```py
>>> train_ds.set_transform(train_transforms)
>>> test_ds.set_transform(val_transforms)
```

133
## Evaluate
134

135
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 馃 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) metric (see the 馃 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

```py
>>> import evaluate

>>> metric = evaluate.load("mean_iou")
```

Then create a function to [`~evaluate.EvaluationModule.compute`] the metrics. Your predictions need to be converted to logits first, and then reshaped to match the size of the labels before you can call [`~evaluate.EvaluationModule.compute`]:

```py
>>> def compute_metrics(eval_pred):
...     with torch.no_grad():
...         logits, labels = eval_pred
...         logits_tensor = torch.from_numpy(logits)
...         logits_tensor = nn.functional.interpolate(
...             logits_tensor,
...             size=labels.shape[-2:],
...             mode="bilinear",
...             align_corners=False,
...         ).argmax(dim=1)

...         pred_labels = logits_tensor.detach().cpu().numpy()
...         metrics = metric.compute(
...             predictions=pred_labels,
...             references=labels,
...             num_labels=num_labels,
...             ignore_index=255,
...             reduce_labels=False,
...         )
...         for key, value in metrics.items():
...             if type(value) is np.ndarray:
...                 metrics[key] = value.tolist()
...         return metrics
```

171
172
173
174
175
176
177
178
179
180
181
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.

## Train

<Tip>

If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#finetune-with-trainer)!

</Tip>

You're ready to start training your model now! Load SegFormer with [`AutoModelForSemanticSegmentation`], and pass the model the mapping between label ids and label classes:
182
183

```py
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
>>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer

>>> pretrained_model_name = "nvidia/mit-b0"
>>> model = AutoModelForSemanticSegmentation.from_pretrained(
...     pretrained_model_name, id2label=id2label, label2id=label2id
... )
```

At this point, only three steps remain:

1. Define your training hyperparameters in [`TrainingArguments`]. It is important you don't remove unused columns because this'll drop the `image` column. Without the `image` column, you can't create `pixel_values`. Set `remove_unused_columns=False` to prevent this behavior! The only other required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the IoU metric and save the training checkpoint.
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.

```py
>>> training_args = TrainingArguments(
...     output_dir="segformer-b0-scene-parse-150",
...     learning_rate=6e-5,
...     num_train_epochs=50,
...     per_device_train_batch_size=2,
...     per_device_eval_batch_size=2,
...     save_total_limit=3,
...     evaluation_strategy="steps",
...     save_strategy="steps",
...     save_steps=20,
...     eval_steps=20,
...     logging_steps=1,
...     eval_accumulation_steps=5,
...     remove_unused_columns=False,
...     push_to_hub=True,
... )
215
216
217
218
219
220
221
222

>>> trainer = Trainer(
...     model=model,
...     args=training_args,
...     train_dataset=train_ds,
...     eval_dataset=test_ds,
...     compute_metrics=compute_metrics,
... )
223
224

>>> trainer.train()
225
226
```

227
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
228
229

```py
230
>>> trainer.push_to_hub()
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
```

## Inference

Great, now that you've finetuned a model, you can use it for inference!

Load an image for inference:

```py
>>> image = ds[0]["image"]
>>> image
```

<div class="flex justify-center">
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="Image of bedroom"/>
</div>

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for image segmentation with your model, and pass your image to it:

```py
>>> from transformers import pipeline

>>> segmenter = pipeline("image-segmentation", model="my_awesome_seg_model")
>>> segmenter(image)
[{'score': None,
  'label': 'wall',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062690>},
 {'score': None,
  'label': 'sky',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A50>},
 {'score': None,
  'label': 'floor',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062B50>},
 {'score': None,
  'label': 'ceiling',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062A10>},
 {'score': None,
  'label': 'bed ',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E90>},
 {'score': None,
  'label': 'windowpane',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062390>},
 {'score': None,
  'label': 'cabinet',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062550>},
 {'score': None,
  'label': 'chair',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062D90>},
 {'score': None,
  'label': 'armchair',
  'mask': <PIL.Image.Image image mode=L size=640x427 at 0x7FD5B2062E10>}]
```

284
You can also manually replicate the results of the `pipeline` if you'd like. Process the image with an image processor and place the `pixel_values` on a GPU:
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

```py
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # use GPU if available, otherwise use a CPU
>>> encoding = feature_extractor(image, return_tensors="pt")
>>> pixel_values = encoding.pixel_values.to(device)
```

Pass your input to the model and return the `logits`:

```py
>>> outputs = model(pixel_values=pixel_values)
>>> logits = outputs.logits.cpu()
```

Next, rescale the logits to the original image size:

```py
>>> upsampled_logits = nn.functional.interpolate(
...     logits,
...     size=image.size[::-1],
...     mode="bilinear",
...     align_corners=False,
... )

>>> pred_seg = upsampled_logits.argmax(dim=1)[0]
```

To visualize the results, load the [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) that maps each class to their RGB values. Then you can combine and plot your image and the predicted segmentation map:

```py
>>> import matplotlib.pyplot as plt

>>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8)
>>> palette = np.array(ade_palette())
>>> for label, color in enumerate(palette):
...     color_seg[pred_seg == label, :] = color
>>> color_seg = color_seg[..., ::-1]  # convert to BGR

>>> img = np.array(image) * 0.5 + color_seg * 0.5  # plot the image with the segmentation map
>>> img = img.astype(np.uint8)

>>> plt.figure(figsize=(15, 10))
>>> plt.imshow(img)
>>> plt.show()
```

<div class="flex justify-center">
332
    <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-preds.png" alt="Image of bedroom overlaid with segmentation map"/>
333
</div>